Surface Integrals of Vector Fields- HW Problems

Evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$ using an upward/outward pointing normal to the surface.

- 1. $\vec{F}(x, y, z) = z\vec{\iota} 2\vec{j} + y\vec{k}$, *S* is the plane x + y + z = 1, where $x \ge 0, y \ge 0, z \ge 0$.
- 2. $\vec{F}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$, *S* is given by $z = 4 x^2 y^2$, where $z \ge 0$.
- 3. $\vec{F}(x, y, z) = x\vec{\iota} + y\vec{j} + z\vec{k}$, where *S* is the upper unit hemisphere.
- 4. $\vec{F}(x, y, z) = -3\vec{i} + 4\vec{j} + 5\vec{k}$, *S* is given by $z = x^2 + y^2$, where $x^2 + y^2 \le 9$.
- 5. $\vec{F}(x, y, z) = x\vec{\iota} + y\vec{j} z^2\vec{k}$, where *S* is given by $\vec{\Phi}(u, v) = \langle 2\cos(u), 2\sin(u), v \rangle$; with $0 \le u \le 2\pi$, $0 \le v \le 2$

6. $\vec{F}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$, where *S* is the closed surface made up of the upper unit hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$ and the unit disk in the *x*-*y* plane $x^2 + y^2 \le 1$.

7. Find the flux of the vector field

$$\vec{F}(x, y, z) = (xy^2)\vec{\iota} + (x^2y)\vec{j} + (\frac{1}{3}z^3)\vec{k}$$

out of the unit sphere.

8. Find the flux of the vector field $\vec{F}(x, y, z) = (-\frac{\sqrt{2}}{2})\vec{\iota} + (\frac{\sqrt{2}}{2})\vec{k}$ through the portion of the cone given by $z = \sqrt{x^2 + y^2}$; where $x^2 + y^2 \le 1$.

9. Find the flux across the surface *S* of $\vec{F}(x, y, z) = \langle -\frac{3}{2}x, -\frac{3}{2}y, z \rangle$ where *S* is given by $z = 2 + x^2 + y^2$; where $3 \le z \le 6$.

10. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} dA$, where $\vec{F}(x, y, z) = \vec{\iota} + \vec{j} + 2z(x^2 + y^2)^2 \vec{k}$, and S is the boundary of the solid cylinder given by $x^2 + y^2 \le 1$, $0 \le z \le 2$.