Surface Integrals of Scalar Functions- HW Problems

Evlauate the following surface integrals.

1. $\iint_{S} (z+3)dS$; where *S* is given by $\vec{\Phi}(u,v) = \langle u, \frac{v}{2}, \frac{v}{4} \rangle$; $(u,v) \in [0,3] \times [0,4]$.

2. $\iint_{S} (x^{2})dS$; where *S* is portion of the cylinder in \mathbb{R}^{3} given by $x^{2} + y^{2} = 9$, $1 \le z \le 3$.

3. $\iint_S (xz - yz)dS$; where *S* is portion of the plane in \mathbb{R}^3 z = x + y + 2, that lies inside the cylinder $x^2 + y^2 = 1$.

4. $\iint_{S} (z)dS$; where S is the interior of the triangle with vertices at (2,0,0), (0,1,0), and (1,0,1).

5. $\iint_{S} \left(\frac{2xy}{z}\right) dS; \text{ where } S \text{ is given in } \mathbb{R}^{3} \text{ by } z = x^{2} + y^{2} \text{ where } 4 \le x^{2} + y^{2} \le 9, \ x \ge 0, \ y \ge 0.$

6. $\iint_{S} \left(\sqrt{x^2 + y^2 + z^2} \right) dS; \text{ where } S \text{ is given in } \mathbb{R}^3 \text{ by } z = \sqrt{x^2 + y^2}$ where $x^2 + y^2 \le 1$.

7. $\iint_S (z+1)dS$; where S is given in \mathbb{R}^3 by $z = 4 - x^2 - y^2$ where $x^2 + y^2 \le 4$.

- 8. $\iint_{S} (z^2) dS$; where *S* is the upper unit hemisphere.
- 9. A helicoid, *S*, is parametrized by

 $\overrightarrow{\Phi}(r,\theta) = \langle rcos(\theta), rsin(\theta), \theta \rangle$; where $0 \le r \le 4, \ 0 \le \theta \le 2\pi$. Suppose the density at $(x, y, z) \in S$ is given by $\rho(x, y, z) = (x^2 + y^2)^{\frac{3}{2}} = (r^2)^{\frac{3}{2}}$. Find the mass of the helicoid.