A Quick Review of Multiple Integration

Double Integration

If the x and y endpoints of integration are all constants (i.e., just numbers, no
variables), then you are integrating over a rectangular region in the plane whose
sides are parallel to the x and y axes.
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To evaluate this integrate, we first integrate with respect to x, holding y constant,
substitute the values of x, and then integrate with respect to y.
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When the endpoints of integration are all constants and the function you are
integrating can be written as f(x,y) = g(x)h(y), then
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When the region we are integrating over is not a rectangle, the endpoints in x and y
will not all be constant. We have 2 methods we can consider in this case.

1. If the region D is bounded below by y = g(x) and above by y = h(x), and along
the sides by x = a and x = b, we have:
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2. Ifthe region D is bounded on the left side by x = g(y) and on the right side by
x = h(y), and below by y = ¢ and above by y = d, then we have:
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Note: If f(x,y) = 1, then [, f(x,y)dA = [[, 1 dA =Area of the region D.



Ex. Evaluate ffD xzydA, where D is the region bounded by the curves y = x?
and y = 2x.

In this case we can solve this using either method 1 or method 2.

Start by graphing the curves that bound D. Find the points of intersection of the
curves (in this case setting x2 = 2x we find x = 0 and x = 2). The points of
intersection are (0,0) and (2,4).

y =2xor|x =

NI

y'=x20rx=\/§

Method 1:

The bottom curveisy = x? and the top curve is y = 2X.
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Method 2:

The left curve is x = %and the right curve is x = \/;

ﬂ x2ydA =f J x2ydxdy =f y|x ‘/_dy
D y=0 x=% y=0 3

o 4[y2 o - (%) yldy

=4,1 5 1
=[Gy =y dy

(@ - )om =%

Ex. Evaluate ffD 2xydA where D is the region inside the triangle with vertices
(0,0), (2,2), (6,2).

First find the equations of the 3 sides:

y=§x, y=x, andy = 2.
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Method 1.

Notice that the top curve switchesat x = 2 (from y = x toy = 2). Thus we have to
break the integral up into 2 pieces if we want to use this method.
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Method 2 (the easier way for this problem).

The left curve is x = y and the right curve is x = 3y.
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When integrating over a disk, or an annulus, or a portion of a disk or an annulus, it is
often useful to change to polar coordinates:
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Ex. Evaluate ffD (x% + y?)%2dydx; where D = {(x,y)| x? + y? < 4}

First sketch the region D:
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Ex. Evaluate ffD xydA, where D is the set where x? + y?> < 9and x > 0.

First sketch the region D: x? 4 y2 =9,
x=0
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Since the endpoints of integration are constants and f(r,8) = g(r)h(0) we have
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Ex. Evaluate ffD x2dydx, where D={(x,y)| 1 <x2+y% <9, and y < 0}

First sketch the region D.
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Since the endpoints of integration are constants and f(r,0) = g(r)h(0) we have
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Triple Integrals

If the x, y, and z endpoints of integration are all constants, then you are integrating
over a rectangular solid whose sides are parallel to the coordinate planes.

Ex. Evaluate fffW xydW, it W ={(x,y,2)|0<x<3,0<y<1 0<z<2}
First sketch W:
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If E is bounded above by the surface z = u,(x,y) and below by the surface

Z = u4(x,y), and the projection of the solid E into the xy-plane is D then:

(Il FGey,2)dE = [[, [7222 f(x,y, z)dzdydx
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X into xy-plane

Note: If f(x,y,z) = 1 then fﬂE f(x,y,z)dE =ﬂfE 1 dE = Volume of E.

Ex. Evaluate fffW x%dW, where

W={(y2)|x*+y2<1, z=0, x2+y?+ 2% < 4}

First sketch the region W:

x*+y*+z2=4
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Now change to polar coordinates since we are integrating over a disk

x =rcosf, y=rsinf, dydx =rdrdf
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Since the endpoints of integration are constants and f(r,8) = g(r)h(0) we have
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Let’s evaluate each integral separately.
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Thus we have:
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4
r 15 5



