Parametrized Surfaces

Just as it's sometimes simpler to represent a curve in \mathbb{R}^3 $(or \mathbb{R}^2)$ in terms of parametric equations: $x = x(t)$, $y = y(t)$, $z = z(t)$, instead of trying to represent it as the intersection of 2 surfaces, $z = f(x, y)$ and $z = g(x, y)$ (which can't always be done), it is sometimes simpler to represent a surface in \mathbb{R}^3 in parametric form: $x = x(u, v)$, $y = y(u, v)$, $z = z(u, v)$, instead of $z = f(x, y)$ (which can't always be done).

Ex. Even a simple surface like the cylinder $x^2 + z^2 = 4$, can't be represented as a simple function $z = f(x, y)$ (in this case we would have 2 functions $z = \sqrt{4 - x^2}$ and $z = -\sqrt{4-x^2}$). However, parametrically we can represent this cylinder by: $x = 2cosu$, $y = v$, $z = 2sinu$; $0 \le u \le 2\pi$, $v \in \mathbb{R}$ (notice that x, y, and z have to satisfy the original equation: $x^2 + z^2 = 4$).

In general, we can represent a surface in parametric form as:

$$
x = x(u, v)
$$
, $y = y(u, v)$, $z = z(u, v)$, and in vector form by:

 $\vec{\phi}(u, v) = < x(u, v)$, $y(u, v)$, $z(u, v) >$; where $\vec{\phi} : D \subset \mathbb{R}^2 \to \mathbb{R}^3$.

The surface, S, is the image of $\vec{\phi}$, i.e. $\vec{\phi}(D)$, and $\vec{\phi}$ is called a **parametrization** of S. For any surface there are an infinite number of parametrizations.

S is called a Differentiable Surface, (or a C^1 Surface) if $x(u, v)$, $y(u, v)$, $z(u, v)$, are differentiable (or C^1)

Ex.
$$
\vec{\Phi}(u, v) = \langle 2cosu, v, 2sinu \rangle
$$
, $0 \le u \le 2\pi$, $v \in \mathbb{R}$ is a parametrization of the circular cylinder $x^2 + z^2 = 4$.
\n(Notice: $x^2 + z^2 = (2cosu)^2 + (2sinu)^2 = 4$).

 \mathcal{X}

Ex. Notice that any surface $z = f(x, y)$; e.g., $z = x^2 + y^2$, can be parametrized by: $x = u$, $y = v$, $z = f(u, v)$, ie,

$$
\vec{\Phi}(u,v) = \langle u, v, f(u,v) \rangle.
$$

In the case of

$$
z = x^2 + y^2
$$
; $x = u$, $y = v$, $z = u^2 + v^2$, i.e.,
\n $\vec{\Phi}(u, v) = \langle u, v, u^2 + v^2 \rangle$.

Ex. (Important Example) Find a parametrization of the sphere of radius R, $x^2 + y^2 + z^2 = R^2$.

One standard parametrization is to use spherical coordinates:

- $x = R \cos\theta \sin\phi$
- $y = R\sin\theta\sin\phi$
- $z = R \cos \phi$

where $0 \le \phi \le \pi$, and $0 \le \theta \le 2\pi$.

Equivalently we could write:

$$
\vec{\Phi}(\phi,\theta) = \langle R \cos\theta \sin\phi, R \sin\theta \sin\phi, R \cos\phi \rangle;
$$

$$
0 \le \phi \le \pi, \text{ and } 0 \le \theta \le 2\pi.
$$

Notice:
$$
x^2 + y^2 + z^2 = (R \cos\theta \sin\phi)^2 + (R \sin\theta \sin\phi)^2 + (R \cos\phi)^2
$$

= $R^2(\sin\phi)^2(\cos^2\theta + \sin^2\theta) + (R \cos\phi)^2$
= $R^2(\sin^2\phi) + R^2(\cos^2\phi) = R^2$.

Ex. Find a parametrization of the ellipsoid $\frac{x^2}{z^2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $rac{y^2}{b^2} + \frac{z^2}{c^2}$ $\frac{2}{c^2} = 1.$

Again, using spherical coordinates we get:

$$
x = a(cos\theta sin\phi)
$$

$$
y = b(sin\theta sin\phi)
$$

$$
z = c(cos\phi)
$$

Where $0 \leq \phi \leq \pi$, and $0 \leq \theta \leq 2\pi$.

Equivalently we could write:

$$
\vec{\phi}(\phi,\theta) = ;
$$

$$
0 \le \phi \le \pi, \text{ and } 0 \le \theta \le 2\pi.
$$

Notice that:

$$
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = \cos^2\theta \sin^2\phi + \sin^2\theta \sin^2\phi + \cos^2\phi = 1.
$$

Tangent Planes to Parametrized Surfaces

Let $\vec{\phi}$ be a differentiable parametrization of a surface S,

At a fixed point (u_0, v_0) , the vectors $\vec{T}_u(u_0, v_0)$ and $\vec{T}_v(u_0, v_0)$ are tangent to the surface S at $\vec{\phi}(u_0,v_0)$. If $\;\vec{T}_u(u_0,v_0)\times \vec{T}_v(u_0,v_0)\neq 0$, then the surface is called **Regular**, or **Smooth**, at $\vec{\phi}(u_0, v_0)$. The surface S is called Regular or Smooth if $\stackrel{\rightarrow}{T}_u(u,v)\times \stackrel{\rightarrow}{T}_v(u,v)\neq 0$ for all points $\stackrel{\rightarrow}{\phi}(u,v)\in S.$

If
$$
\vec{T}_u(u_0, v_0) \times \vec{T}_v(u_0, v_0) \neq 0
$$
 at a fixed point (u_0, v_0) , then
\n $\vec{T}_u(u_0, v_0) \times \vec{T}_v(u_0, v_0)$ is normal (perpendicular) to the surface S at $\vec{\Phi}(u_0, v_0)$.

We can use this fact to find an equation of the tangent plane to S at $\vec{\phi}(u_0,v_0)$.

Ex. Consider the surface given by: $x = u cos v$, $y = u sin v$, $z = u$; where $u \ge 0$, $0 \le v \le 2\pi$. Identify the surface, determine where it is smooth, and find an equation for the tangent plane at $u = 1$, $v = \frac{\pi}{3}$ $\frac{\pi}{2}$.

$$
x2 + y2 = u2(cos2v) + u2(sin2v) = u2 = z2
$$

$$
z2 = x2 + y2; where u = z \ge 0. This is the upper half of a cone about the z-axis.
$$

$$
\vec{T}_u = \frac{\partial \vec{\Phi}}{\partial u} = \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} = \frac{\partial y}{\partial v}, \sin v, 1 >
$$

$$
\vec{T}_v = \frac{\partial \vec{\Phi}}{\partial v} = \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} = \frac{\partial y}{\partial v} = \frac{\partial z}{\partial v}, \cos v, 0 > \frac{\partial z}{\partial v} = \frac
$$

$$
\vec{T}_u \times \vec{T}_v = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ cosv & sinv & 1 \\ -usinv & ucosv & 0 \end{vmatrix}
$$

$$
= \begin{vmatrix} sinv & 1 \\ ucosv & 0 \end{vmatrix} \vec{l} - \begin{vmatrix} cosv & 1 \\ -usinv & 0 \end{vmatrix} \vec{j} + \begin{vmatrix} cosv & sinv \\ -usinv & ucosv \end{vmatrix} \vec{k}
$$

$$
\vec{T}_u \times \vec{T}_v = (-ucosv)\vec{i} - (usinv)\vec{j} + u(cos^2 v + sin^2 v)\vec{k}
$$

$$
= (-ucosv)\vec{i} - (usinv)\vec{j} + u\vec{k}.
$$

We want to know when $\vec{T}_u \times \vec{T}_v = 0$ (that will tell us where the surface is NOT smooth). Notice that $\vec{T}_u \times \vec{T}_v = 0$ exactly when $\left| \vec{T}_u \times \vec{T}_v \right| = 0.$

In this case that means: $\sqrt{u^2 cos^2 v + u^2 sin^2 v + u^2} = |u|\sqrt{2} = 0.$ This happens when $u = 0$. So what point(s) on the surface have $u = 0$? $u = 0$ at the point $(0,0,0)$. So $(0,0,0)$ is the only point on S where S is NOT smooth.

To find an equation of the tangent plane at $u=1, v=\frac{\pi}{2}$ $\frac{\pi}{2}$, we need to find

 $\vec{T}_u \times \vec{T}_v$ at $u=1$, $v=\frac{\pi}{2}$ $\frac{\pi}{2}$. We know: $\vec{T}_u \times \vec{T}_v = (-u cos v)\vec{\imath} - (u sin v)\vec{\jmath} + u\vec{k}.$ So at $u=1$, $v=\frac{\pi}{2}$ $\frac{\pi}{2}$, $\vec{T}_u \times \vec{T}_v = -\vec{j} + \vec{k}$. This vector is perpendicular to the tangent plane at $u = 1$, $v = \frac{\pi}{2}$ $\frac{\pi}{2}$. Now we need the point (x, y, z) on the surface that corresponds to $u = 1, v = \frac{\pi}{2}$ $\frac{\pi}{2}$. $x = u cos v$, $y = u sin v$, $z = u$; plugging in $u = 1$, $v = \frac{\pi}{2}$ $\frac{\pi}{2}$, we get:

 $x = 0$ $y = 1$ $z = 1$.

Normal vector $\vec{N} = < 0, -1, 1 >;$ point= $(0,1,1)$ Equation of tangent plane: $0(x - 0) - 1(y - 1) + 1(z - 1) = 0$ or, $-y + z = 0$.

Ex. Consider the surface in \mathbb{R}^3 (called a helicoid) parametrized by $\vec{\phi}(r, \theta) = < r \cos \theta$, $r \sin \theta$, $\theta >$; where $0 \le r \le 1$ and $0 \le \theta \le 2\pi$. a) sketch the surface, b) show the surface is regular (ie smooth) everywhere, c) find a unit normal vector at $\vec{\Phi}(r, \theta)$, and d) find an equation of the tangent plane at $r=\frac{1}{2}$ $\frac{1}{2}$ and $\theta = \frac{\pi}{4}$ $\frac{\pi}{4}$.

a) For any fixed value of r , $0 \le r \le 1$, $\vec{\phi}(r, \theta) = < r \cos \theta$, $r \sin \theta$, $\theta > \infty$ just part of a helix.

We need to show that $\vec{T}_r \times \vec{T}_\theta \neq 0$ for all $0 \leq r \leq 1$ and $0 \leq \theta \leq 2\pi$. That's the same thing as showing that $\big\vert \vec T_r\times \vec T_\theta \big\vert \neq 0.$

 $|\vec{T}_r \times \vec{T}_\theta| = \sqrt{\sin^2 \theta + \cos^2 \theta + r^2} = \sqrt{1 + r^2} \neq 0$ anywhere, so S is smooth everywhere.

c) $\vec{T}_r\times\vec{T}_\theta$ is a normal vector at $\vec{\varPhi}(r,\theta)$, $\,$ but its length is not 1 everywhere. So we need to divide this vector by its length to get a unit normal vector.

Unit normal =
$$
\vec{n} = \frac{\vec{r}_r \times \vec{r}_\theta}{|\vec{r}_r \times \vec{r}_\theta|}
$$

= $\frac{\sin\theta \vec{i} - \cos\theta \vec{j} + r\vec{k}}{\sqrt{1+r^2}} = \frac{\sin\theta}{\sqrt{1+r^2}} \vec{i} - \frac{\cos\theta}{\sqrt{1+r^2}} \vec{j} + \frac{r}{\sqrt{1+r^2}} \vec{k}.$

d) A normal vector at $r=\frac{1}{2}$ $\frac{1}{2}$ and $\theta = \frac{\pi}{4}$ $\frac{\pi}{4}$ is given by evaluating $\vec{T}_r \times \vec{T}_\theta(\frac{1}{2})$ $\frac{1}{2}$, $\frac{\pi}{4}$ $\frac{1}{4}$). $\vec{T}_r \times \vec{T}_\theta = \sin\theta \vec{i} - \cos\theta \vec{j} + r\vec{k}$ at $r=\frac{1}{2}$ $\frac{1}{2}$ and $\theta = \frac{\pi}{4}$ $\frac{\pi}{4}$ we get: $\vec{T}_r \times \vec{T}_\theta = \frac{\sqrt{2}}{2}$ $\sqrt{\frac{2}{2}}\vec{l}-\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2} j + \frac{1}{2}$ $rac{1}{2}\vec{k}$.

So a normal vector to the tangent plane at $\vec{\phi}(\frac{1}{2})$ $\frac{1}{2}$, $\frac{\pi}{4}$ $\frac{\pi}{4}$) is $<\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}, \frac{1}{2}$ $\frac{1}{2}$ >.

We need to find the point (x, y, z) that corresponds to $r = \frac{1}{2}$ $\frac{1}{2}$ and $\theta = \frac{\pi}{4}$ $\frac{\pi}{4}$.

$$
\vec{\Phi}(r,\theta) = \langle r\cos\theta, r\sin\theta, \theta \rangle; \text{ so } \vec{\Phi}\left(\frac{1}{2}, \frac{\pi}{4}\right) = \langle \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, \frac{\pi}{4} \rangle.
$$

Eq. of tangent plane: $\frac{\sqrt{2}}{2}(x-\frac{\sqrt{2}}{4})$ $\sqrt{\frac{2}{4}}$ – $\frac{\sqrt{2}}{2}$ $\sqrt{\frac{2}{2}}\left(x-\frac{\sqrt{2}}{4}\right)$ $\frac{\sqrt{2}}{4}$ + $\frac{1}{2}$ $rac{1}{2}\left(z-\frac{\pi}{4}\right)$ $\frac{\pi}{4}$) = 0.