
                                         Line Integrals of Vector Fields 

 

Def.   Let �⃗�(𝑥, 𝑦, 𝑧)be a vector field on ℝ3 that is continuous on the 𝐶1 curve 

          𝑐: [𝑎, 𝑏] →  ℝ3.  We define 

                            ∫ �⃗⃗⃗�
𝒄

(𝒙, 𝒚, 𝒛) ∙ 𝒅�⃗⃗�=∫ �⃗⃗⃗�
𝒃

𝒂
(�⃗⃗�(𝒕)) ∙ (𝒄′⃗⃗⃗ ⃗(𝒕))𝒅𝒕 , 

         where 𝑐(𝑎) and 𝑐(𝑏) are the endpoints of the path 𝑐. 

 

Notice that if 𝑐′⃗⃗⃗ ⃗(𝑡) ≠ 0 we have: 

∫ �⃗�
𝑐

(𝑥, 𝑦, 𝑧) ∙ 𝑑𝑠=∫ �⃗�
𝑏

𝑎
(𝑐(𝑡)) ∙ (𝑐′⃗⃗⃗ ⃗(𝑡))𝑑𝑡 

                               = ∫ (�⃗�
𝑏

𝑎
(𝑐(𝑡)) ∙

𝑐′⃗⃗ ⃗⃗ (𝑡)

|𝑐′⃗⃗ ⃗⃗ (𝑡)|
)(|𝑐′⃗⃗⃗ ⃗(𝑡)|)𝑑𝑡 

                               = ∫ �⃗�
𝑏

𝑎
(𝑐(𝑡)) ∙ �⃗⃗�) (|𝑐′⃗⃗⃗ ⃗(𝑡)|)𝑑𝑡;     �⃗⃗� =unit tangent vector to 𝑐. 

So the line integral of a vector field can be thought of as the line (or path)) integral of 

the tangential component of �⃗� along 𝑐(𝑡). 

 

From elementary physics we know that if 𝐹 is a constant force along the 𝑥-axis, then 

the work, 𝑊, done to move an object from 𝑥 = 𝑎 to 𝑥 = 𝑏 is 𝑊 = (𝐹)(𝑑), where    

𝑑 = 𝑏 − 𝑎. 

Similarly, if �⃗� is a constant force vector and 𝑐 is a line segment in ℝ2 or ℝ3, then    

𝑊 = �⃗� ∙ 𝑑, where 𝑑 = 𝑐(𝑡2) − 𝑐(𝑡1). 

If �⃗⃗⃗� represents a force vector field then ∫ �⃗⃗⃗�
𝒄

∙ 𝒅�⃗⃗�  is the work done to move a 

particle from 𝒄(𝒂) 𝒕𝒐 𝒄(𝒃). 
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Ex.   Evaluate ∫ �⃗�
𝑐

∙ 𝑑𝑠  where �⃗�(𝑥, 𝑦, 𝑧) = (𝑥𝑦)𝑖 + (𝑦𝑧)𝑗 + (𝑥𝑧)�⃗⃗�, and 𝑐 is given by:           

         𝑐: [0,1] →  ℝ3,    𝑡 →< 𝑡,  𝑡2,  𝑡3 >. 

 

∫ �⃗�
𝑐

∙ 𝑑𝑠=∫ �⃗�
𝑏

𝑎
(𝑐(𝑡)) ∙ (𝑐′⃗⃗⃗ ⃗(𝑡))𝑑𝑡 

        𝑐(𝑡) =< 𝑡,  𝑡2,  𝑡3 >,  so 𝑐′⃗⃗⃗ ⃗(𝑡) =< 1, 2𝑡, 3𝑡2 > ,   where  0 ≤ 𝑡 ≤ 1,   and  

 �⃗�(𝑐(𝑡)) =< 𝑡 (𝑡2),  𝑡2(𝑡3), 𝑡(𝑡3) >=< 𝑡3, 𝑡5, 𝑡4 >.  

  

  So plugging in we get: 

∫ �⃗�
𝑐

∙ 𝑑𝑠 = ∫ < 𝑡3, 𝑡5, 𝑡4 >∙< 1, 2𝑡, 3𝑡2 >
1

0
𝑑𝑡                                                       

                  = ∫ (𝑡31

0
+ 2𝑡6 + 3𝑡6)𝑑𝑡 = ∫ (𝑡31

0
+ 5𝑡6)𝑑𝑡 =

1

4
𝑡4 +

5

7
𝑡7|

1
0

  =  
27

28
 . 

 

Ex.  Consider a force field �⃗� =< 𝑠𝑖𝑛𝑧, 𝑐𝑜𝑠√𝑦, 𝑥3 >,  find the work done to move a 

particle along the line segment from (1,0,0) to (0,0,3). 

 

First we need to find a parametrization for the curve (a line segment) 𝑐.  The line that 

goes through (1,0,0) and (0,0,3) has a direction vector: 

�⃗� =< 0 − 1, 0 − 0, 3 − 0 >=< −1, 0, 3 > ; 

using the point (1,0,0), we get an equation for a line: 

𝑥 = 1 − 𝑡,   𝑦 = 0,   𝑧 = 3𝑡 ;    or equivalently:    𝑐(𝑡) =< 1 − 𝑡, 0, 3𝑡 >. 
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Notice that we just want the line segment between (1,0,0) and (0,0,3) so we need to 

restrict t so that   0 ≤ 𝑡 ≤ 1. 

              𝑐′⃗⃗⃗ ⃗(𝑡) =< −1,0,3 >;          �⃗�(𝑐(𝑡)) =< 𝑠𝑖𝑛3𝑡, 𝑐𝑜𝑠√0, (1 − 𝑡)3 >.  

 

      Work= ∫ �⃗�
𝑐

∙ 𝑑𝑠 = ∫ �⃗�
𝑏

𝑎
(𝑐(𝑡)) ∙ (𝑐′⃗⃗⃗ ⃗(𝑡))𝑑𝑡 

               = ∫ < 𝑠𝑖𝑛3𝑡, 1, (1 − 𝑡)3 >∙
𝑡=1

𝑡=0
< −1, 0, 3 > 𝑑𝑡   

                 = ∫ [−𝑠𝑖𝑛3𝑡 + 3(1 − 𝑡)3]𝑑𝑡
𝑡=1

𝑡=0  

          = [
1

3
𝑐𝑜𝑠3𝑡 −

3

4
(1 − 𝑡)4]|

1
0

= (
1

3
𝑐𝑜𝑠3 −

3

4
(0)) − (

1

3
𝑐𝑜𝑠0 −

3

4
(1))       

           =
1

3
𝑐𝑜𝑠3 −

1

3
+

3

4
=

1

3
𝑐𝑜𝑠3 +

5

12
 . 

 

 

 

Notice that: 

𝑑𝑠 = 𝑐′⃗⃗⃗ ⃗(𝑡)𝑑𝑡  

      =<
𝑑𝑥

𝑑𝑡
,

𝑑𝑦

𝑑𝑡
,

𝑑𝑧

𝑑𝑡
> 𝑑𝑡  

       =<
𝑑𝑥

𝑑𝑡
𝑑𝑡,

𝑑𝑦

𝑑𝑡
𝑑𝑡,

𝑑𝑧

𝑑𝑡
𝑑𝑡 > 

       =< 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 >. 

Thus we can think of  𝑑𝑠 = (𝑑𝑥)𝑖 + (𝑑𝑦)𝑗 + (𝑑𝑧)�⃗⃗� . 
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 And so if  

�⃗�(𝑥, 𝑦, 𝑧) = 𝐹1(𝑥, 𝑦, 𝑧)𝑖 + 𝐹2(𝑥, 𝑦, 𝑧)𝑗 + 𝐹3(𝑥, 𝑦, 𝑧)�⃗⃗� ,   

 then we have: 

�⃗�(𝑥, 𝑦, 𝑧) ∙ 𝑑𝑠 = (𝐹1𝑖 + 𝐹2𝑗 + 𝐹3�⃗⃗�) ∙ ( (𝑑𝑥)𝑖 + (𝑑𝑦)𝑗 + (𝑑𝑧)�⃗⃗�)  

�⃗�(𝑥, 𝑦, 𝑧) ∙ 𝑑𝑠 = 𝐹1(𝑥, 𝑦, 𝑧)𝑑𝑥 + 𝐹2(𝑥, 𝑦, 𝑧)𝑑𝑦 + 𝐹3(𝑥, 𝑦, 𝑧)𝑑𝑧.   

 

So that means we can write: 

∫ �⃗⃗⃗�
𝒄

∙ 𝒅�⃗⃗� = ∫ 𝑭𝟏(𝒙, 𝒚, 𝒛)𝒅𝒙 + 𝑭𝟐(𝒙, 𝒚, 𝒛)𝒅𝒚 + 𝑭𝟑(𝒙, 𝒚, 𝒛)𝒅𝒛.
𝒄

     

 

In this case, represent the curve 𝑐 as parametric equations, 

 𝑥 = 𝑥(𝑡),  𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡) and calculate  

𝑑𝑥 = 𝑥’(𝑡)𝑑𝑡, 𝑑𝑦 = 𝑦’(𝑡)𝑑𝑡,  and  𝑑𝑧 = 𝑧’(𝑡)𝑑𝑡.  

 

Ex.   Evaluate ∫ 𝑦2𝑑𝑥 + 𝑥𝑑𝑦,
𝑐

  where 𝑐 is the line segment from (−5 − 3) to (0,1).   

 

In this case we want to represent the curve 𝑐 in parametric equations. 

Let’s start with the line segment 𝑐 through the points (−5, −3) and (0,2). 

Direction vector �⃗� =< 0 − (−5), 1 − (−3) >=< 5, 4 >.  

Using the point (−5, −3) we get: 

𝑥 = −5 + 5𝑡,    𝑦 = −3 + 4𝑡,   0 ≤ 𝑡 ≤ 1,     𝑑𝑥 = 5𝑑𝑡,    𝑑𝑦 = 4𝑑𝑡.   
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   ∫ 𝑦2𝑑𝑥 + 𝑥𝑑𝑦 = 
𝑐 ∫ [(−3 + 4𝑡)2(5)𝑑𝑡 + (−5 + 5𝑡)(4)𝑑𝑡] 

1

0
                     

                                  = ∫ (80𝑡2 − 100𝑡 + 25)𝑑𝑡
1

0
 

                                   = (
80

3
𝑡3 − 50𝑡2 + 25𝑡)|

1
0

=
80

3
− 50 + 25 =

5

3
 . 

 

 

 

Ex.   Find ∫ 𝑥𝑧𝑑𝑥 − 𝑦2𝑧𝑑𝑦 + 𝑥𝑦𝑑𝑧,
𝑐

  where 𝑐 is the curve 𝑥 = 𝑦3, 𝑧 = 2, where −1 ≤

𝑦 ≤ 1. 

 

 

 

 

 

We can parametrize this curve by: 

𝑦 = 𝑡,           𝑥 = 𝑦3 = 𝑡3,        𝑧 = 2 ; 

𝑑𝑦 = 𝑑𝑡,     𝑑𝑥 = 3𝑡2𝑑𝑡,         𝑑𝑧 = 0𝑑𝑡.  

∫ 𝑥𝑧𝑑𝑥 − 𝑦2𝑧𝑑𝑦 + 𝑥𝑦𝑑𝑧 
𝑐

=     

                                             = ∫ (𝑡3)(2)(3𝑡2)𝑑𝑡 − (𝑡2)(2)𝑑𝑡 + (𝑡3)(t)(0)dt 
1

−1
                                                                           

                                              = ∫ 6𝑡5 − 2𝑡2𝑑𝑡 = −
4

3
 

1

−1
. 

 

𝑧 = 2 

𝑥 = 𝑦3,   𝑧 = 2 
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Orientation preserving vs. Orientation reversing Parametrizations 

Let 𝑐1: [𝑎1, 𝑏1] →  ℝ3 and 𝑐2: [𝑎2, 𝑏2] →  ℝ3 both be 𝐶1, 1-1 maps with the same 

image in ℝ3 (ie, they are the same curve).  𝑐2 is called Orientation Preserving if : 

      𝑐2(𝑎2) = 𝑐1(𝑎1)   and   𝑐2(𝑏2) = 𝑐1(𝑏1).    

𝑐2 is called Orientation Reversing if : 

      𝑐2(𝑎2) = 𝑐1(𝑏1)   and   𝑐2(𝑏2) = 𝑐1(𝑎1).    

 

For an orientation preserving parametrization, the curve 𝑐2 starts and ends at the 

same points as the curve 𝑐1, but it may “travel at a different velocity”, i.e., 

𝑐1⃗⃗⃗⃗
′
(𝑡) ≠  𝑐2⃗⃗⃗⃗

′
(𝑡) .  

 

Ex. Consider 3 parametrizations of the semicircle  𝑥2 + 𝑦2 = 1,   𝑦 ≥ 0: 

𝑐1: [0, 𝜋] →  ℝ2,    𝑐1⃗⃗⃗⃗ =< 𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡 >;     0 ≤ 𝑡 ≤ 𝜋;     𝑐1⃗⃗⃗⃗
′
(𝑡) =< −𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡 > 

𝑐2: [0, 𝜋] →  ℝ2,    𝑐2⃗⃗⃗⃗ =< −𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡 >;  0 ≤ 𝑡 ≤ 𝜋;    𝑐2⃗⃗⃗⃗
′
(𝑡) =< 𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡 > 

𝑐3: [0,
𝜋

2
] →  ℝ2,    𝑐3⃗⃗⃗⃗ =< 𝑐𝑜𝑠2𝑡, 𝑠𝑖𝑛2𝑡 >;  0 ≤ 𝑡 ≤

𝜋

2
;   𝑐3⃗⃗⃗⃗

′
(𝑡) =< −2𝑠𝑖𝑛2𝑡, 2𝑐𝑜𝑠2𝑡 >. 

𝑐1 and 𝑐2 have opposite orientations, i.e., 𝑐2 is an orientation reversing 

parametrization of 𝑐1. 

𝑐1 and 𝑐3 have the same orientation, i.e., 𝑐3 is an orientation preserving 

parametrization of 𝑐1.  However, notice that the velocity vectors of 𝑐1 and 𝑐3 are 

different, ie,  𝑐1⃗⃗⃗⃗
′
(𝑡) ≠ 𝑐3⃗⃗⃗⃗

′
(𝑡). 
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Ex   Evaluate ∫ �⃗�
𝑐

∙ 𝑑𝑠  the curves  𝑐1⃗⃗⃗⃗ , 𝑐2⃗⃗⃗⃗  , and 𝑐3⃗⃗⃗⃗  above  when  �⃗�(𝑥, 𝑦) = (𝑦)𝑖.  

 

∫ �⃗�
𝑐1

∙ 𝑑𝑠 =  ∫ < 𝑠𝑖𝑛𝑡, 0 >∙< −𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡 > 𝑑𝑡
𝜋

0
=   ∫ −(𝑠𝑖𝑛2𝑡)𝑑𝑡

𝜋

0
 

                     = − ∫ (
1

2
−

𝑐𝑜𝑠2𝑡

2
)𝑑𝑡

𝜋

0
= −(

1

2
𝑡 −

𝑠𝑖𝑛2𝑡

4
)|

𝜋
0

= −
𝜋

2
 .  

 

∫ �⃗�
𝑐2

∙ 𝑑𝑠 =  ∫ < 𝑠𝑖𝑛𝑡, 0 >∙< 𝑠𝑖𝑛𝑡, 𝑐𝑜𝑠𝑡 > 𝑑𝑡
𝜋

0
=   ∫ (𝑠𝑖𝑛2𝑡)𝑑𝑡

𝜋

0
=

𝜋

2
 .  

 

∫ �⃗�
𝑐3

∙ 𝑑𝑠 =  ∫ < 𝑠𝑖𝑛2𝑡, 0 >∙< −2𝑠𝑖𝑛𝑡, 2𝑐𝑜𝑠𝑡 > 𝑑𝑡
𝜋

2
0

 

                  =   ∫ −2(𝑠𝑖𝑛22𝑡)𝑑𝑡
𝜋

2
0

=−
𝜋

2
 . 

Notice that when we changed the orientation (using  𝑐2), the line integral became the 

negative of the original line integral.  When we didn’t change the orientation (using 

𝑐3) the value of the original integral didn’t change. 

 

Thm.  Let �⃗� be a continuous vector field on the 𝐶1, 1 − 1  curve 𝑐1.  Let 𝑐2 be an 

reparametrization of the curve 𝑐1.   If 𝑐2 is orientation preserving then: 

   ∫ �⃗�
𝑐1

∙ 𝑑𝑠 = ∫ �⃗�
𝑐2

∙ 𝑑𝑠 . 

If 𝑐2 is orientation reversing then: 

∫ �⃗�
𝑐1

∙ 𝑑𝑠 = − ∫ �⃗�
𝑐2

∙ 𝑑𝑠 . 
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The Fundamental Theorem of Calculus says:  ∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎).
𝑏

𝑎
 

There is a similar theorem for line integrals of Gradient vector fields. 

 

Theorem:  Suppose 𝑓: ℝ3 → ℝ is a 𝐶1, real-valued function and 𝑐: [𝑎, 𝑏] →  ℝ3 is a  𝐶1 

curve.  Then 

          ∫ ∇𝑓⃗⃗ ⃗⃗ ⃗
𝑐

∙ 𝑑𝑠 = 𝑓(𝑐(𝑏)) − 𝑓(𝑐(𝑎)).  

 

Notice that this says that if �⃗�=∇𝑓⃗⃗ ⃗⃗ ⃗, then ∫ �⃗�
𝑐

∙ 𝑑𝑠 depends only on the endpts of the 

curve c.  So any path that is 𝐶1 from 𝑐(𝑎) to 𝑐(𝑏) gives the same value for the integral.  

In this case we say the line integral is “path independent” (i.e., it doesn’t matter how 

you get from 𝑐(𝑎) to 𝑐(𝑏)) 

 

 

Ex.  Let 𝑐 be the path 𝑐(𝑡) =< (1 − 𝑡)𝑒𝑡, 𝑡2, 0 >;     𝑡 ∈ [0,1].   Evaluate 

      ∫ 2𝑥𝑑𝑥 + 2𝑦𝑑𝑦
𝑐

.  (Note:  this is the same as ∫ 2𝑥𝑑𝑥 + 2𝑦𝑑𝑦
𝑐

+ 0𝑑𝑧). 

 

Notice that if �⃗�(𝑥, 𝑦, 𝑧) = 2𝑥𝑖 + 2𝑦𝑗 + 0�⃗⃗�;   and  𝑑𝑠 = (𝑑𝑥)𝑖 + (𝑑𝑦)𝑗 + (𝑑𝑧)�⃗⃗� 

∫ 2𝑥𝑑𝑥 + 2𝑦𝑑𝑦
𝑐

= ∫ �⃗�
𝑐

∙ 𝑑𝑠 ;    where �⃗� = ∇𝑓;   𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2.  So 

 

∫ 2𝑥𝑑𝑥 + 2𝑦𝑑𝑦
𝑐

= 𝑓(𝑐(1)) − 𝑓(𝑐(0))  

                                 = 𝑓(0,1,0) − 𝑓(1,0,0) = 12 − 12 = 0. 
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For now, in order to use this theorem given a vector field �⃗� we have to be able to 

guess a function 𝑓(𝑥, 𝑦, 𝑧) such that �⃗� = ∇𝑓 (if such a function even exists).  Later we 

will see a method for finding this 𝑓, if it exists. 

 

Def.  A simple curve C is the image of a piecewise 𝐶1 map 𝑐: [𝑎, 𝑏] →  ℝ3, that is 1-1 

on [a,b].  The map 𝑐, is called a parametrization of the curve C. 

 

Notice that a simple curve does not intersect itself (otherwise 𝑐 wouldn’t be 1-1). 

𝑐(𝑎) and 𝑐(𝑏) are called the endpoints of the curve C.  A simple curve has 2 

orientations, going from 𝑐(𝑎) to 𝑐(𝑏) and going from 𝑐(𝑏) to 𝑐(𝑎). 

 

Def.  A simple closed curve is a piecewise 𝐶1 map 𝑐: [𝑎, 𝑏] →  ℝ3, that is 1-1 on [𝑎, 𝑏) 

and satisfies 𝑐(𝑎) = 𝑐(𝑏).   

If 𝑐 is not necessarily 1-1 on [𝑎, 𝑏), and 𝑐(𝑎) = 𝑐(𝑏), then it is called a closed curve. 

 

                                                                       

 

                                                                          

 

           A simple closed curve                                                       A closed curve 

 

A simple closed curve has 2 orientations corresponding to the 2 directions around the 

curve. 

 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi03bqL24LhAhUFT98KHeEXAxIQjRx6BAgBEAU&url=https://www.target.com/p/powertrains-24pc-figure-8-track-pack/-/A-52602078&psig=AOvVaw1OPu0EADJVE_j1R2W3TcmT&ust=1552689906205057
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjX77jK24LhAhUOVd8KHYFHCR4QjRx6BAgBEAU&url=https://etc.usf.edu/clipart/42600/42660/ellipse_42660.htm&psig=AOvVaw1xc881SP4FNAUn_FLDIjgn&ust=1552690091998180
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Once again we have the following theorem: 

Thm.  Let �⃗� be a continuous vector field on a simple closed  curve 𝑐1.  Let 𝑐2 be a 

reparametrization of the curve 𝑐1.   If 𝑐2 is orientation preserving then: 

   ∫ �⃗�
𝑐1

∙ 𝑑𝑠 = ∫ �⃗�
𝑐2

∙ 𝑑𝑠 . 

If 𝑐2 is orientation reversing then: 

∫ �⃗�
𝑐1

∙ 𝑑𝑠 = − ∫ �⃗�
𝑐2

∙ 𝑑𝑠 . 

 

Let 𝑐 be an oriented curve consisting of several components 𝑐𝑖 , 𝑖 = 1,2, … 𝑘,  then we 

write 𝑐 = 𝑐1 + 𝑐2 + ⋯ + 𝑐𝑘  and 

 

                      ∫ �⃗�
𝑐

∙ 𝑑𝑠 =∫ �⃗�
𝑐1

∙ 𝑑𝑠 + ∫ �⃗�
𝑐2

∙ 𝑑𝑠 + ⋯ + ∫ �⃗�
𝑐𝑘

∙ 𝑑𝑠. 

 

 

Ex.  Find ∫ sin(𝜋𝑥) 𝑑𝑦 − cos (𝜋𝑦)𝑑𝑧,
𝑐

   where 𝑐 is the triangle with vertices 

(1,0,0), (0,1,0), and (0,0,1) in that order. 

                                                         

 

 

 

 

 

(1,0,0) (0,1,0) 

(0,0,1) 

𝑐1  

𝑐2 

𝑐3 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwje-syh3ILhAhVjQt8KHY6KAMgQjRx6BAgBEAU&url=https://tex.stackexchange.com/questions/125027/how-to-achieve-a-perspective-where-two-axes-of-a-3d-scene-coincide-with-the-x-an&psig=AOvVaw22YjWIXpIxqXdppYYIvLCO&ust=1552690301748430
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  So 𝑐 = 𝑐1 + 𝑐2 + 𝑐3,  where 𝑐1 is the line segment from (1,0,0) to (0,1,0), etc. 

                      ∫ sin(𝜋𝑥) 𝑑𝑦 − cos(𝜋𝑦) 𝑑𝑧 =  ∫ + ∫ +
𝑐2𝑐1𝑐 ∫𝑐3

 .  

 

We need to find parametric equations for these three line segments.  First find the 

direction vector and then use the initial point to find the equations. 

𝑐1:     𝑣1⃗⃗⃗⃗⃗ =< −1,1,0 >,  using the point (1,0,0) we get 𝑥 = 1 − 𝑡,   𝑦 = 𝑡,   𝑧 = 0, 

          and    𝑑𝑥 = −𝑑𝑡,    𝑑𝑦 = 𝑑𝑡,    𝑑𝑧 = 0.  

 

𝑐2:     𝑣2⃗⃗⃗⃗⃗ = < 0, −1,1 >, using the point (0,1,0) we get  𝑥 = 0 ,   𝑦 = 1 − 𝑡,   𝑧 = 𝑡 , 

          and    𝑑𝑥 = 0,    𝑑𝑦 = −𝑑𝑡,    𝑑𝑧 = 𝑑𝑡 .  

 

𝑐3:     𝑣3⃗⃗⃗⃗⃗ =< 1,0, −1 >  using the point (0,0,1) we get  𝑥 = 𝑡 ,   𝑦 = 0,   𝑧 =  1 − 𝑡 , 

          and    𝑑𝑥 = 𝑑𝑡,    𝑑𝑦 = 0 ,    𝑑𝑧 =  −𝑑𝑡. 

In each case 0 ≤ 𝑡 ≤ 1.  

 

∫ sin(𝜋𝑥) 𝑑𝑦 − cos(𝜋𝑦) 𝑑𝑧 =  ∫ sin(𝜋(1 − 𝑡)) (𝑑𝑡) − cos(𝜋𝑡) (0) =
2

𝜋
 

1

0𝑐1
  

 

∫ sin(𝜋𝑥) 𝑑𝑦 − cos(𝜋𝑦) 𝑑𝑧 =  ∫ sin(𝜋(0)) (−𝑑𝑡) − cos(𝜋(1 − 𝑡)) 𝑑𝑡 = 0 
1

0𝑐2
   

 

∫ sin(𝜋𝑥) 𝑑𝑦 − cos(𝜋𝑦) 𝑑𝑧 = 
𝑐3

∫ sin(𝜋𝑡) (0) − cos(𝜋(0))(− 𝑑𝑡) =  1
1

0
   

 

∫ sin(𝜋𝑥) 𝑑𝑦 − cos(𝜋𝑦) 𝑑𝑧 =  ∫ + ∫ +
𝑐2𝑐1𝑐 ∫𝑐3

=
2

𝜋
+ 1.  
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Ex.  Consider the triangle, 𝑐, with vertices (0,0), (1,0), and (0,1) oriented 

counterclockwise.  Evaluate       ∫ 𝑥2𝑑𝑥 + 𝑥𝑦𝑑𝑦
𝑐

. 

 

 

 

 

 

 

 

We need to parametrize the 3 components (sides) of the the triangle 𝑐. 

 

𝑐1: [0,1] → ℝ2 ;           So in parametric equations we have:  𝑥 = 𝑡,   𝑦 = 0; 

              t→< 𝑡, 0 >         and therefore,   𝑑𝑥 = 𝑑𝑡  𝑎𝑛𝑑 𝑑𝑦 = 0. 

 

𝑐2: [0,1] → ℝ2 ;        direction vector  𝑣2⃗⃗⃗⃗⃗ =< −1,1 >;     𝑥 = 1 − 𝑡,   𝑦 = 𝑡 

              t→< 1 − 𝑡, 𝑡 >            and        𝑑𝑥 = −𝑑𝑡  𝑎𝑛𝑑  𝑑𝑦 = 𝑑𝑡. 

 

𝑐3: [0,1] → ℝ2 ;        direction vector  𝑣3⃗⃗⃗⃗⃗ = < 0, −1 >;     𝑥 = 0 ,       𝑦 = 1 − 𝑡     

              𝑡 →< 0, 1 − 𝑡 >            and        𝑑𝑥 = 0      𝑎𝑛𝑑  𝑑𝑦 = −𝑑𝑡 

 

 

(0,0) (1,0) 

(0,1) 

𝑐1  

𝑐2 

𝑐3 
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∫ 𝑥2𝑑𝑥 + 𝑥𝑦𝑑𝑦 = ∫ 𝑡2𝑑𝑡 + 0 =
1

3
𝑡3|

1
0

=
1

3

𝑡=1

𝑡=0𝑐1
  

 

∫ 𝑥2𝑑𝑥 + 𝑥𝑦𝑑𝑦 =
𝑐2

 ∫ −(1 − 𝑡)2𝑑𝑡 + (1 − 𝑡)(𝑡)𝑑𝑡
𝑡=1

𝑡=0
 

                                 = ∫ [−(1 − 2𝑡 + 𝑡2) + 𝑡 − 𝑡2]
𝑡=1

𝑡=0
𝑑𝑡 

                                  = ∫ (−1 − 𝑡 − 2𝑡2)𝑑𝑡 = −𝑡 −
1

2
𝑡2 −

2

3
𝑡3|

1
0

= −
13

6

𝑡=1

𝑡=0
  

 

∫ 𝑥2𝑑𝑥 + 𝑥𝑦𝑑𝑦 = ∫ [02(1) − 0(1 − 𝑡)]𝑑𝑡 = 0
𝑡=1

𝑡=0𝑐3
   

 

∫ 𝑥2𝑑𝑥 + 𝑥𝑦𝑑𝑦 =
1

3
−

13

6
+ 0 = −

11

6𝑐
 .  


