Line Integrals of Vector Fields- HW Problems

Let $\vec{V}(x, y, z) = y\vec{i} + x\vec{j} + z\vec{k}$. Evaluate the integral of \vec{V} along each of the curves below.

1.
$$\vec{c}(t) = \langle t, 2t, 3t \rangle; \quad 0 \le t \le 1$$

2. $\vec{c}(t) = \langle \sin(t), \cos(t), 0 \rangle; \quad 0 \le t \le 2\pi$
3. $\vec{c}(t) = \langle t, t^2, t^3 \rangle; \quad 0 \le t \le 1$

Let $\vec{F}(x, y) = x\vec{j}$. Evaluate the integral of \vec{F} over the following curves.

- 4. $\vec{c}(t) = <\cos(t), \sin(t) >; \quad 0 \le t \le 2\pi$
- 5. $\vec{c}(t) = < -\cos(t)$, $\sin(t) >; \quad 0 \le t \le 2\pi$
- 6. $\vec{c}(t) = <\cos(2t), \sin(2t) >; \quad 0 \le t \le \pi$

Evaluate the following line integrals.

7. $\int_c ydx + x^2dy$; where *c* is the line segment from (1, -1) to (4,5)8. $\int_c y^2dx + z^2dy + x^2dz$; where *c* is the curve $x = z^2$, y = 2where $-1 \le z \le 2$ 9. $\int_c xydx + yzdy + xzdz$; where $\vec{c}(t) = \langle t, t^2, t^{\frac{1}{2}} \rangle$; $0 \le t \le 1$ 10. $\int_c xydx + yzdy + xzdz$; where *c* is the triangle oriented by starting at the vertex (2,0,0), then going to the vertex (0,2,0), then to the vertex (0,0,2), and then back to (2,0,0). 11. $\int_{c} (x - y)dx + ydy$; where *c* is the curve $y = \sin(x)$; $0 \le x \le \pi$ 12. Consider the force field $\vec{F}(x, y, z) = \langle y, -2x, 2 \rangle$. Find the work done to move a particle along a curve given by $\vec{c}(t) = \langle t, t^{2}, t^{3} \rangle$ from the point (1, 1, 1) to the point (2, 4, 8).

13. Evaluate $\int_c x^2 dx + x dy$; where *c* is the circle $x^2 + y^2 = 4$ oriented counterclockwise.

14. Evaluate $\int_c 3x^2 dx + 3y^2 dy$; where *c* is a smooth closed curve (Note: If $\vec{F}(x, y, z) = (3x^2)\vec{\iota} + (3y^2)\vec{j} + (0)\vec{k}$ then $\vec{F} = \nabla f$, where $f(x, y, z) = x^3 + y^3$).