Stokes' Theorem, the Divergence Theorem, and the Fundamental Theorem of Calculus- HW Problems

In problems 1 and 2 evaluate $\int_{\partial S} \omega$ directly and by Stokes' theorem.

$$1. \quad \omega = x^2 y dx + z^2 dy$$

S is the upper unit hemisphere given by $\vec{\Phi}(u, v) = \langle \cos(v) (\sin(u)), \sin(v) (\sin(u)), \cos(u) \rangle;$ $0 \le u \le \frac{\pi}{2}, \quad 0 \le v \le 2\pi.$

2.
$$\omega = (y + z)dx + (x + z)dy + (x + y)dz$$

S is the portion of the cone given by
 $\vec{\Phi}(r,\theta) = \langle rcos(\theta), rsin(\theta), r \rangle;$
 $0 \le \theta \le 2\pi, 0 \le r \le 2.$

In problems 3 and 4 evaluate $\iint_{S} \omega$ directly and by the divergence theorem.

3. $\omega = 3xdxdy - xdydz$

S is the unit sphere.

4.
$$\omega = zdxdy + x^2ydydz - ydzdx$$

S is the boundary of the solid cylinder: $x^2 + y^2 \le 4$, $0 \le z \le 3$.