The Divergence Theorem- HW Problems

Verify the divergence theorem, $\iint_{\partial W} \vec{F} \cdot d\vec{S} = \iiint_W Div \vec{F} dV$, for

1. $\vec{F}(x, y, z) = (z)\vec{\iota} + (y)\vec{j} + (x)\vec{k}$, where *W* is the solid ball $x^2 + y^2 + z^2 \le 1$.

Use the divergence theorem to solve problems 2-9.

- 2. Evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$ where $\vec{F}(x, y, z) = (x^{2})\vec{\iota} (y)\vec{j} + (z)\vec{k}$, and $S = \partial W$ where W is the solid cylinder $x^{2} + y^{2} \le 4$, $0 \le z \le 3$.
- 3. Calculate the flux of $\vec{F}(x, y, z) = (x + yz)\vec{i} + (y + xz)\vec{j} + (z + xy)\vec{k}$ out of the sphere $x^2 + y^2 + z^2 = 4$.
- 4. Evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$ where

$$\vec{F}(x, y, z) = (x^3 + y^3)\vec{\iota} + (y^3 + z^3)\vec{j} + (z^3 + x^3)\vec{k}$$

and S is the unit sphere (outward normal)

5. Calculate the flux of

 $\vec{F}(x, y, z) = (y^3 + e^y)\vec{\iota} + (z + x^3)\vec{j} + (z^3)\vec{k}$ where *W* is the region in \mathbb{R}^3 given by $x^2 + y^2 + z^2 \le 4$, $z \le 0$, $y \le 0$ 6. Evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$ where

 $\vec{F}(x, y, z) = (x + y)\vec{\iota} + (y + z)\vec{j} + (z + e^{\cos(x)})\vec{k}$

and W is the region in \mathbb{R}^3 given by $x^2 + y^2 \le z \le 8 - x^2 - y^2$, $x \le 0$, where $S = \partial W$ is oriented with the outward pointing normal.

7. Evaluate $\iint_{\partial W} \vec{F} \cdot d\vec{S}$ where

 $\vec{F}(x,y,z) = (x+e^z)\vec{\iota} + (y-z)\vec{j} + (z)\vec{k}$

and W is the region in \mathbb{R}^3 given by the intersection of $z \le 6 - x^2 - y^2$ and $z \ge 2$, where ∂W is oriented with the outward pointing normal.

8. Calculate the flux of

 $\vec{F}(x, y, z) = \langle x + yz, y - xz, x^2 + y^2 \rangle$

out of the rectangular solid $[0,1] \times [1,3] \times [2,4]$.

9. Let *S* be a closed surface in \mathbb{R}^3 and $\vec{F}(x, y, z)$ a C^2 vector field on \mathbb{R}^3 . Evaluate $\iint_S (\nabla \times \vec{F}) \cdot d\vec{S}$.