Green’s Theorem

Green’s theorem is a generalization of the fundamental theorem of Calculus:

2 f')dx = £(b) - f(@).

Notice that the FTC relates the definite integral of f'(x) over a line segment, [a, b],
with the value of the function f(x) at the endpoints of that interval (i.e. at a and b).
Another way to think of the endpoints of an interval (i.e., a line segment) is as the
boundary of that interval (much the way the unit circle is the boundary of the unit
disk, x* + y? < 1). So the FTC relates the definite integral of f'(x) over a line
segment with the value of the function f(x) on the boundary of the interval.

Green’s theorem relates a double integral of a function (we will see later how this
function is similar to the “derivative” of another function) over an elementary region
in R? with a line integral around the boundary of that region.

Green’s Theorem: Let D be a simple region and let ¢ be its boundary. Suppose

P:D > R and Q: D = R are both C?! functions then

9Q op
J. PG, y)dx +Q(x,y)dy = [[, G~ 5)dxdy.

Note: We denote the “boundary of D” by dD, so we could rewrite Green’s thm as:

80 oP
faD P(x, )’)dx + Q(x, y)dy = -UD (a - 5)dxdy

Green’s theorem is useful because sometimes one side of Green’s theorem is
much easier to evaluate than the other side.



We can prove Green’s theorem by proving the following two lemmas.

Lemma 1: Let D be a y-simple region and let c = dD. Suppose P: D — Ris of class
Clthen: [ P(x,y)dx = —ffD dxdy

Lemma 2: Let D be an x-simple region and let ¢ = dD. Suppose Q: D — R is of class

Ctthen: [ Q(x,y)dx = [[, g—gdxdy.

Adding the conclusions to lemma 1 and lemma 2 gives Green’s theorem.

To prove lemma 1 let’s assume that D is bounded below by the curve y = f(x),
above by the curve y = g(x) and on the sides by x = a and x = b.
0D =c=c; +c, —c3 —c, (oriented counterclockwise) where

y=g@)
| & /i\c G)=<t,f(t)>: a<t<b
.1

= “

y = (@) &) =<t,gt)> ast<b

G, (t) =<b,t>  f(b) <t<g(b)

() =<a,t> f(a)<t<g(a).

By Fubini’s theorem we can say:

y=g(x) 6P
ffD —dxd f fy —FO) ay yldx.

Now by the fundamental theorem of Calculus we have:

ffD —dxd x:;[P(x,g(x)) — P(x,f(x))]dx

Now let’s evaluate the line integral around 0D = c:

[ PGoy)dx = [Z)P(tf(®)dt — [ P(t, g(©))dt.



Notice that the line integrals along ¢, and c, are both 0 because % = 0.
If we rewrite this line integral around c, replacing x for t we get:
J. P(x,y)dx = f;c:;[P(x,f(x)) — P(x,g(x))]dx
= — f;:f[P(x,g(x)) — P(x, f(x))]dx.
Now notice from our earlier calculation for ffD Z—idxdy we have:

P

)
fc P(x,y)dx = —ffD dedy.

A similar argument also proves lemma 2.

Ex. Evaluate fc (3y — eSi"x)dx + (7x + \/y* + 1)dy; where cis the circle

x? + y% = 9 oriented counterclockwise.

Suppose we just try to evaluate this line integral directly.

x = 3cost, y = 3sint; dx = (—3sint)dt, dy = (3cost)dt.

So the line integral becomes:

2m
f (9sint — esinGeost) (—3sint)dt + (21cost + J81sin*t + 1)(3cost)dt
0

Ugh!ll



Now use Green’s theorem:

P(x,y) = 3y — eStn* Qlx,y) =7x ++y*+1
P 9Q _
% 3 Pl 7

[, By —es™)dx + (7x + [y + Ddy = [, G2- —)d dy
= [f, (7 = 3)dxdy = [[, (4)dxdy

where D is the disk about the origin of radius 3.

=4 [f dxdy= 4(area of circle of radius 3)= 4(97) = 36m.

Sometimes the line integral is easier than the double integral. For example, if you
knew that P(x,y) = Q(x,y) = 0 on the curve c (but not necessarily away from c). In
this case:

0 dP
f (—Q — —)dxdy j P(x,y)dx + Q(x,y)dy = 0.

c

Ex. Verify Green’s theorem for P(x,y) =y, Q(x,y) = —x, on the disk of radius 4.

. 0Q 9P
Jo PCoy)dx +QCoy)dy = [f, Gf—5-)dxdy

or_ | e _
ay_l' ox 1

The boundary of a disk of radius 4 is the circle of radius 4:

x = 4cost, y = 4sint, dx = (—4sint)dt, dy = (4cost)det.



J. PO, y)dx + Q(x,y)dy =
2T
j ydx — xdy = j (4sint)(—4sint)dt — (4cost)(4cost)dt
c 0

= ["(~16sin® t — 16cos?t)dt = [ " —16dt = —32m.

Il, G2 =3Ddxdy = [f, (=1 - Ddxdy = [f,, —2dxdy

= —2(area of disk) = —2(16m) = —32m.

Ex. Verify Green’s Theorem for P(x,y) =y, Q(x,y) = —x on:

a. Therectangle D = [—1,2] x [1,3]
b. Theannulus D = {(x,y) E R?|4 <x2+y? <16}

0 oP
[, PGoy)dx +QCey)dy = [f, G- )dxdy
oP _ 90 _
a_ ! ox 1

To solve part “a@” let’s start with the LHS of the equation for Green’s Theorem.

Here we have to parametrize the sides of the rectangle.

C3

0D =cy +c¢, +c3+c,; where ' N <
q)=<tl1> —-1<t<2 A
&l (t) =< 1,0 > 5k ANEENEEEE Tl
G)=<2,t> 1<t<3 P

cy(t) =< 0,1 >

N

1




G(t)=<-t3> —-2<t<1
c3(t) =< —-1,0>
C(t)=<-1,—-t> -3<t<-1

& (t) =<0,-1>
Jypydx — xdy =
— fcl ydx — xdy + fcz ydx — xdy + fcg ydx — xdy + fC4 ydx — xdy

= [21dt + [0 —2dt + [} -3dt + [ —1dt

=3—-4-9-2=-12.

For the RHS of Green’s theorem we have:

I, (‘;—f — Z_D dxdy = [[, (=1 — Ddxdy = =2 [[  dxdy
= —2(area of rect.) = —2(3)(2) = —12.

For part “b” notice that Green’s theorem is actually true for any region that can be
broken up into a finite union of simple regions.

A ’ Y _Cl ' Here the annulus, D = D; U D5,
l/ C2 T 1 % | \ <o Ml is the union of two simple
7 - ' regions. Notice that the two

ﬂ \l | boundary circles are oriented in

‘ opposite directions.

— —
=
—




For part “b” we need to parametrize the /

2 circles bounding the annulus. However, /

f /

remember that they will be oriented ’
4 -3 0

in opposite directions. \ \

\ \ /

\ \\,2.,__-/" .
¢, (t) =< 4cost,4sint > 0<t<2mw \
\
(counterclockwise) N

¢; (t) =< —4sint, 4cost >

¢, (t) =< 2cost,—2sint> 0<t<2mw
(clockwise)

Cy (t) =< —2sint, —2cost >

Cc = Cl + C2
fc ydx — xdy = fC1 ydx — xdy + fCZ ydx — xdy
2T . i
= fo [4sint(—4sint) — 4cost(4cost)]dt
+ fozn[—Zsint(—Zsint) — 2cost(—2cost)]dt

= [[" =16+ [, 4dt = =321 + 87 = —24m.

I, (Z—z — Z—;)dxdy = [[, —2dxdy = —2(area of annulus)

= —-2(n(4)? — n(2)?) = —24n.




Theorem: Area of a Region. If cis a simple closed curve that bounds a region to which
Green’s theorem applies, then the area of the region D bounded by c=0D is

A=2f [(0)dy — (y)dx].

Proof: Let P(x,y) = —y, Q(x,y) = x. Then by Green’s theorem

1
_faD [()dy — (y)dx] = _ff (_ — (= ))dxdy = EﬂD 2dxdy
= Area of D.
Ex. Find the area enclosed by the eII|pse = + — =1,
2 2
y xt v

We can parametrize the ellipse by:
X = acost, y = bsint, 0<t < 2m.

dx = —(asint)dt, dy = (bcost)dt.

Area= %faD(x)dy — (y)dx
= %fozn[(acost) (bcost) — (bsint)(—asint)] dt
1 pr2m .
= Efo ab(cos? t + sin? t)dt

= %fozn(ab)dt = nab.



Ex. Green’s Theorem and Kepler’s 2" law of planetary motion.

Kepler’s 2" law of planetary motion says that a line segment joining a planet and the
sun sweeps out equal areas during equal intervals of time.

Area(D;) =Area(D,).

By our previous theorem we know that :
A= %faD(x)dy — (y)dx ; where c=0D is given by ¢(t) =< x(t),y(t) >.
So we can rewrite the area A by using: dx = x'(t)dt, dy = y'(t)dt.

A= [ (x®)0' @)t~ (y(O) ' (©)de

2

A= [P (x®)'®) - (r®)(x'©)dt .

So Kepler’s 2" law of planetary motion folows if we can show that the integrand,

(x(t))(y’(t)) — (y(t))(x’(t)), is a constant.

This will follow from Newton’s law of gravity (13 = -MmG < ad 3, Y = >)

(x2+y3)z  (x%+y?)2

and Newton’s second law of motion (F = md = m < x"'(t),y"(t) >).
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Setting the 2 expressions for F equal to eachother we get:

X

x"(t) = —MG( ) y'(t) = -MG(—L—).
(x2+y?)2 (x2+y?)2

Now let’s show that (x(t))(y’(t)) — (y(t))(x’(t)) is a constant:

2 ((x®) (' ®) = () (' (1)) = x(O)y" (©) — y(O)x" (&)

= x(t) —MG( Y 3> —y(t) —MG( = 3> = 0.
(x2+y2)2 (x2+y2)?

Vector Form of Green’s Theorem: Let D c R? be a region to which Green’s theorem
applies. Let dD be its positively oriented (ie counterclockwise) boundary, and let

F = P(x,y)T+ Q(x,y)j be a C* vector field on D then

-

fopF - ds = [f, (curl F)-kdA = [f, (VX F) - kdA.

Proof: F = P(x,y)T+ Q(x,y)] + Ok.

I 7k
o 7|8 9 a|__9%e, 0P, 0Q 0P
curlF—VxF—a 3 ol T %L T3, +(6x ay)k
P Q O

F-ds = (P + Q)) - (dxT + dy)) = Pdx + Qdy.



So by Green’s theorem:

J, PG, y)dx +Q(x,y)dy = [[, (g—g —Z—i)dxdy or

-

fyp Fds =[] (curlF)-kdA= [[ (VXF)-kdA.

Ex. Find the work done to move a particle around a triangle (counterclockwise) with
vertices (0,0), (1,1), and (0,2), if the force vector field is given by

F(x,y) = (cosx + xy)T + (x% + e5™)7 .

(0,2)
2~\~‘
\‘\
TS y=—x+2
v/ S |
D N~ (1.1)
- /’5;= X
0 - 1

In this case P(x,y) = cosx + xy, Q(x,y) = x? + e5™,

oP _ 9Q
So 3y =x, = 2x.
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So by Green’s theorem:

=’ - aQ opP
Work= [, F-ds= [[, G~ 3,)xdy

= [f, @x —x)dxdy = [[, xdxdy
= [ f;’:x_x”x dydx

_ox=1__ y=—x+2
=m0 YT, — 4

x=0

dx

= [ x(=x +2) — x?]dx

1
0

1

_ (*=1 2 — (2 _ 2.3yt = 2 _
=), o (2x —2x%)dx = (x =X =1-3=

Ex. LetF(x,y) = 2y + e¥)T+ (x + sin(¥?))j, and let ¢ be the circle

x? +y® = 1. Evaluate [ F - dS. | X2+ y2 =|1

(o

In this case, P(x,y) =2y + e* and

Q(x,vy) = x + sin(y?), so we have

oP 2Q _
ay—Z and ax—l.
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So by Green’s theorem:

[, F-ds=[[ (VxF)-kda=[f, G- Z—i)dxdy = Jf, (1 - 2)dxdy

= ffD —1dxdy; Where D is the unit disk about the origin.

= —(area of unit disk) = —m.

Ex. Evaluate ffD (VXF)- kdA using Green’s theorem where

ﬁ(x, y) =< x?% + yz, xy >, and D is the region in the first quadrant bounded by

y =x3 andy = x2.

First draw the region D:

aD=C1_C2

-

(VXF)-kdA=[, F-d$= [ _<x%+y%xy> <dx,dy>
D aD aD

= fcl (x? + y?) dx + (xy)dy — fcz (x? + y?) dx + (xy)dy.
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Now parametrize the curves ¢; and ¢, and compute the line integrals.
¢ (t) =<t t3>; 0<t<1

ci(t) =<1,3t2 >

G)=<t t?> 0<t<1

cy(t) =< 1,2t >
[, (VX EF)-kdA = [[[(t* +t%) + t*(3tD)]dt — [J[(t2 + t*) + t3(26)]dt

— (Y42 6 1ri2 4
= [, (t? +4t%)dt — [ (t* + 3t*)dt

N

— (Lep16 _ 244 _ A7 3.5yl _4_3__1
= [, (4t 3tYdt = (St 51:)|0— - .

Divergence form of Green’s theorem (This can be generalized to R3).

Let D c R? be a region to which Green’s theorem applies. Let dD be its positively
oriented (ie counterclockwise) boundary. Let 71 denote the outward unit normal to

aD. Let F = R(x,y)T + T(x,y)] be a C* vector field on D then:

[,p(F s = [f (div F)dA.

Proof: For any vector ¥ =< a, 8 >, in R?, both < 8, —a > and < —f3,a > are
perpendicular to v.

SoIf aD = ¢(t) =< x(t), y(t) >, then ¢'(t) =< x'(t),y'(t) > is a tangent vector to

¢(t). An outward pointing normal vector is given by N(t) =< y'(t), —x'(t) >.
<y'(t),—x"(t)>

(@) + @)

Thus the outward pointing unit normal vector is given by: ﬁ(t) =
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c'(t) =< x'(t),y'(t) >

\ L~

N@®) =< y'(t), —x'(t) >

7

Since |’ (t)] = \/(x’(t))z + (y’(t))2 we have:

J,p(F - f)ds =

= [ < R(x(0),y(©), T(x(©), y(©)) > —2L2x0> J (x'@®)* + (y'(®)dt
(@) @)

= [PIR(x(0), y(©)y'(®) = T(x(®), y(©))x'(B)]dt .

Since dx = x'(t)dt, dy = y'(t)dt we have

= faD R(x,y)dy — T(x, y)dx.
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Now applying the standard Green’s theorem where P(x,y) = —T(x,y),
Q(x,y) = R(x,y) we get

[y (F -yds = [ (5 + Z—i) dxdy = [J (divF)dxdy .

Ex. Let F(x,y) = (siny)i + (cosx)j. Find faD(I3 -n)ds, where dD is the unit circle.

[, (F-f)ds = [[ (div F)dA
But divF = 0, so [f, (divF)dA = 0.

Thus [, (F - @)ds = 0.

Ex. Verify the Divergence thm for F = (xy)7 — (y)] and the disk x2 + y2 < 16.

_ x*+y* =16

First let’s calculate [, (F - )ds. i T ~§

' 4 | * l\‘\\ ?
0D = ¢(t) =< 4cost,4sint >; 0<t<2m { T T [ [ | \‘
¢'(t) =< —4sint, 4cost > 1\ N N I S A |
|¢'(t)] = V16 cos?t + 16sin?2t = 4 T R O ' '
- <4cost, 4sint> . > 9 ' : ' ' '
() = SO S o cime > | I ] L




F -7 =< 16costsint, —4sint >-< cost, sint > = 16(cos? t)(sint) — 4 sin® t

faD(ﬁ -n)ds = fozn[16 (cos? t)(sint) — 4 sin? t](4)dt
=16 [f02n4 (cos? t)(sint)dt — fozn (sin? t) dt]
If we let u = cost in the first integral we see it’s equal to 0.

Substituting sin? t = %— %cosZt in the second integral shows it equals .

[, (F - )ds = —16m.

Now let’s calculate ffD (divﬁ)dxdy.
divF = y—1.

I, @ivFYdxdy = [[ (v — Ddxdy.

Now since D is a disk, change to polar coordinates.

I, (divF)dxdy = fozn f:(rsine — 1) (r)drde
— fozn f04(r25in9 — 1) drd6
_2m o3 ., 1 o504
=J, (Grisind —-r )|Od0

21 64

o (3 sind — 8)d6O

— 2% 056 — 86]°T = —16m.
3 0
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