Gauss Curvature and the Gauss-Bonnet Theorem

Let $\vec{\phi}$: $D\to\mathbb{R}^3$, be a smooth parametrized surface S ($\vec{\phi}(D)=S,\ \ \vec{T}_u\times\vec{T}_v\neq0$). We want to develop a definition of the Gauss Curvature of a surface at a point $p \in S$.

Let's start with 2 curves in the x, y plane: $y = x^2$ and $y = 4x^2$.

Our intuition tells us that the curvature of $y = 4x^2$ at the point $(0,0)$ is larger than the curvature of $y = x^2$ at $(0,0)$. We can also intuitively conclude that the notion of curvature should be related to the second derivative of the function at that point. Not surprisingly, $y'' = 8$ for the curve $y = 4x^2$ at $(0,0)$, and $y'' = 2$ for the curve $y = x^2$ at $(0,0)$. (In this particular example, the curvature of the 2 curves actually does equal 8 and 2, however, in general, the calculation of curvature is a more complicated than just calculating the 2^{nd} derivative.)

Now let's parametrize both curves:

Notice the upward pointing unit normal vector at the point (0,0) to both curves is

$$
\vec{n} = 0.1 >
$$

Finally, notice that the "curvatures" we calculated above can be gotten by:

$$
\vec{c_1}''(t) \cdot \vec{n} = 0.2 > 0.1 > 2
$$
\n
$$
\vec{c_2}''(t) \cdot \vec{n} = 0.8 > 0.1 > 8
$$

Thus it should not surprise us to see 2^{nd} derivatives dotted with a unit normal vector in a formula for curvature of a surface.

To define curvature for a surface we start by defining:

$$
E = \left| \frac{\partial \vec{\phi}}{\partial u} \right|^2, \quad F = \frac{\partial \vec{\phi}}{\partial u} \cdot \frac{\partial \vec{\phi}}{\partial v}, \quad G = \left| \frac{\partial \vec{\phi}}{\partial v} \right|^2
$$

It can be shown through a messy calculation that:

$$
|\vec{T}_u \times \vec{T}_v|^2 = EG - F^2.
$$

Let $W = EG - F^2$.

We know that a unit normal vector, \vec{n} , on the surface S is given by:

$$
\vec{n} = \frac{\vec{T}_u \times \vec{T}_v}{|\vec{T}_u \times \vec{T}_v|} = \frac{\vec{T}_u \times \vec{T}_v}{\sqrt{W}}
$$

.

Now we define 3 functions l, m, n at a point $p \in S$ by:

$$
l(p) = \vec{n}(u, v) \cdot \frac{\partial^2 \vec{\phi}}{\partial u^2}
$$

$$
m(p) = \vec{n}(u, v) \cdot \frac{\partial^2 \vec{\phi}}{\partial u \partial v}
$$

$$
n(p) = \vec{n}(u, v) \cdot \frac{\partial^2 \vec{\phi}}{\partial v^2}
$$

We now define the **Gauss Curvature**, $k(p)$, for $p \in S$:

$$
k(p)=\frac{\ln -m^2}{W}.
$$

Ex. Planes have curvature 0 at every point.

The general form of a plane in \mathbb{R}^3 has the form:

$$
\vec{\Phi}(u,v) = \langle (a_1u + a_2v + a_3), (b_1u + b_2v + b_3), (c_1u + c_2v + c_3) \rangle;
$$

where a_i, b_i, c_i are constants.

Notice that since $\vec{\phi}(u, v)$ is linear in u and v we have:

$$
\frac{\partial^2 \vec{\phi}}{\partial u^2} = 0, \qquad \frac{\partial^2 \vec{\phi}}{\partial u \partial v} = 0, \qquad \frac{\partial^2 \vec{\phi}}{\partial v^2} = 0 \implies
$$

$$
l(p) = \vec{n}(u, v) \cdot \frac{\partial^2 \vec{\phi}}{\partial u^2} = 0
$$

$$
m(p) = \vec{n}(u, v) \cdot \frac{\partial^2 \vec{\phi}}{\partial u \partial v} = 0
$$

$$
n(p) = \vec{n}(u, v) \cdot \frac{\partial^2 \vec{\phi}}{\partial v^2} = 0.
$$

Thus we have:

$$
k(p) = \frac{\ln - m^2}{W} = 0.
$$

Ex. Calculate the Gauss curvature of the sphere $x^2 + y^2 + z^2 = R^2$.

 $\vec{\phi}(\phi,\theta) = < R \cos\theta \sin\phi$, $R \sin\theta \sin\phi$, $R \cos\phi >; 0 \le \phi \le \pi$, and $0 \le \theta \le 2\pi$. \vec{T}_{ϕ} =< $R \cos\theta \cos\phi$, $R \sin\theta \cos\phi$, $-R \sin\phi$ > $\vec{T}_{\theta} = < -Rsin\theta sin\phi$, Rcos $\theta sin\phi$, O $>$

$$
\vec{T}_{\phi} \times \vec{T}_{\theta} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ Rcos\theta cos\phi & Rsin\theta cos\phi & -Rsin\phi \\ -Rsin\theta sin\phi & Rcos\theta sin\phi & 0 \end{vmatrix}
$$

$$
\vec{T}_{\phi} \times \vec{T}_{\theta} = R^{2} sin^{2}\phi cos\theta \vec{i} + R^{2} sin^{2}\phi sin\theta \vec{j} + R^{2} sin\phi cos\phi \vec{k}.
$$

$$
|\vec{T}_{\phi} \times \vec{T}_{\theta}| = \sqrt{R^{4} sin^{4}\phi cos^{2}\theta + R^{4} sin^{4}\phi sin^{2}\theta + R^{4} sin^{2}\phi cos^{2}\phi}
$$

$$
= R^{2} sin\phi.
$$

Unit normal=
$$
\vec{n} = \frac{\vec{T}_{\phi} \times \vec{T}_{\theta}}{|\vec{T}_{\phi} \times \vec{T}_{\theta}|^{2}}
$$

$$
= \frac{R^{2} sin^{2}\phi cos\theta \vec{i} + R^{2} sin^{2}\phi sin\theta \vec{j} + R^{2} sin\phi cos\phi \vec{k}}{R^{2} sin\phi}
$$

$$
\vec{n} = sin\phi cos\theta \vec{i} + sin\phi sin\theta \vec{j} + cos\phi \vec{k}.
$$

$$
\frac{\partial^2 \vec{\phi}}{\partial \phi^2} = \langle -R\cos\theta \sin\phi, -R\sin\theta \sin\phi, -R\cos\phi \rangle
$$

$$
\frac{\partial^2 \vec{\phi}}{\partial \phi \partial \theta} = \langle -R\sin\theta \cos\phi, R\cos\theta \cos\phi, 0 \rangle
$$

$$
\frac{\partial^2 \vec{\phi}}{\partial \theta^2} = \langle -R\cos\theta \sin\phi, -R\sin\theta \sin\phi, 0 \rangle
$$

$$
l(p) = \vec{n} \cdot \frac{\partial^2 \vec{\phi}}{\partial \phi^2}
$$

= $\langle \sin\phi \cos\theta, \sin\phi \sin\theta, \cos\phi \rangle$ $\langle -R\cos\theta \sin\phi, -R\sin\theta \sin\phi, -R\cos\phi \rangle$
= $-R\cos^2\theta \sin^2\phi - R\sin^2\theta \sin^2\phi - R\cos^2\phi$
= $-R[\sin^2\phi(\cos^2\theta + \sin^2\theta) + \cos^2\phi] = -R$

$$
m(p) = \vec{n} \cdot \frac{\partial^2 \vec{\phi}}{\partial \phi \partial \theta}
$$

= $\langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle \langle -R \sin \theta \cos \phi, R \cos \theta \cos \phi, 0 \rangle$
= 0

$$
n(p) = \vec{n} \cdot \frac{\partial^2 \vec{\phi}}{\partial \theta^2}
$$

= $\sin\phi \cos\theta, \sin\phi \sin\theta, \cos\phi$ > $\cos\theta$ – $\arccos\theta \sin\phi$, – $\arcsin\theta \sin\phi$, 0 >
= $-\arccos\theta \cos^2\theta - \arccos\theta \sin^2\theta$
= $-\arccos\theta + \sin^2\phi = -\arccos\theta$.

Since $\left| \vec{T}_{\bm{\phi}} \times \vec{T}_{\theta} \right| = R^2 sin \phi$, $W = |\vec{T}_{\phi} \times \vec{T}_{\theta}|^2 = R^4 sin^2 \phi$.

Finally, we have the Gauss Curvature, $k(p)$:

$$
k(p) = \frac{ln - m^2}{W} = \frac{(-R)(-R\sin^2\phi) - (0)^2}{R^4 \sin^2\phi} = \frac{1}{R^2}
$$

Thus the Gauss Curvature of a sphere of radius R is constant at all points and equal to $\frac{1}{R^2}$.

Notice that for a sphere of any radius R :

$$
\frac{1}{2\pi} \iint_S k(p) dS = \frac{1}{2\pi} \iint_S \frac{1}{R^2} dS = \frac{1}{2\pi R^2} \iint_S dS = \frac{4\pi R^2}{2\pi R^2} = 2.
$$

 $\iint_S \ k(p) dS$ is sometimes referred to as the total curvature of the surface $S.$

Gauss-Bonnet Theorem: $\frac{1}{2\pi}\iint_S k(p)dS = 2-2g$, where *S* is a closed smooth surface in \mathbb{R}^3 and g is the genus (number of holes) of the surface.

Thus, $\frac{1}{2\pi}\iint_S\ k(p)dS$ for any ellipsoid is equal to $\frac{1}{2\pi}\iint_S\ k(p)dS$ for any sphere $(= 2)$, since both surfaces are genus 0 (no holes). In fact, this remarkable theorem says that if we had a sphere made of clay and distorted it into any smooth surface we like without punching a hole in it, $\frac{1}{2\pi}$ times the integral of the Gauss curvature of that new surface over that surface (ie $\frac{1}{2\pi}$ times the total curvature) would still be 2.