A Quick Review of a few Topics from 3rd Semester Calculus

1. Vectors in R^3

A vector in R^3 is a line segment from the origin $(0,0,0)$ to a point in R^3 , (a, b, c) . We denote this vector by $\langle a, b, c \rangle$.

We can also write this vector as:

$$
\langle a, b, c \rangle = a\vec{i} + b\vec{j} + c\vec{k};
$$

where $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, $\vec{k} = \langle 0, 0, 1 \rangle$.
Ex. $\langle 2, 5, -1 \rangle = 2\vec{i} + 5\vec{j} - \vec{k}$.

We can add or subtract vectors by adding or subtracting their components.

Ex.
$$
< 2, -3, 4 > + < 5, 0, -2 > = < 7, -3, 2 > < 3, 2, -4 > - < 5, -1, 2 > = < -2, 3, -6 > 5
$$

We can also multiply a vector by a real number (called a scalar), by multiplying each of the components.

Ex.
$$
(-6) < 3, -2, -3 > = < -18, 12, 18 > .
$$

There are 2 ways to multiply vectors in R^3 , through a "Dot" product (whose answer is a number, not a vector), and through a "Cross" product (whose answer is a vector not a number).

Let $\vec{v}_1 = \langle a_1, b_1, c_1 \rangle$ and $\vec{v}_2 = \langle a_2, b_2, c_2 \rangle$.

Dot Product:

 $\vec{v}_1 \cdot \vec{v}_2 = a_1 a_2 + b_1 b_2 + c_1 c_2$

Note: $\vec{v}_1 \cdot \vec{v}_2$ is a real number, NOT a vector.

Ex. $< 2, -3, 4 > 0, -2 > = (2)(5) + (-3)(0) + (4)(-2) = 10 + 0 - 8 = 2.$

Notice that: $\vec{v}_1 \cdot \vec{v}_1 = a_1^2 + b_1^2 + c_1^2 = ||\vec{v}_1||^2$

or
$$
\|\vec{v}_1\| = \sqrt{\vec{v}_1 \cdot \vec{v}_1} = \sqrt{a_1^2 + b_1^2 + c_1^2}
$$

Properties of the Dot product:

1. $\vec{v}_1 \cdot \vec{v}_2 = \vec{v}_2 \cdot \vec{v}_1$ 2. $\vec{v}_1 \cdot (\vec{v}_2 + \vec{v}_3) = \vec{v}_1 \cdot \vec{v}_2 + \vec{v}_1 \cdot \vec{v}_3$

If $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}$, $\vec{v} \neq \vec{0}$, then a unit vector (a vector of length 1) in the direction of \vec{v} is given by:

$$
\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{a}{\sqrt{a^2 + b^2 + c^2}} \vec{t} + \frac{b}{\sqrt{a^2 + b^2 + c^2}} \vec{f} + \frac{c}{\sqrt{a^2 + b^2 + c^2}} \vec{k}
$$

Ex. Find a unit vector in the direction of $\vec{v} = < 2, -2, 1 > = 2\vec{i} - 2\vec{j} + \vec{k}$

Here
$$
a = 2
$$
, $b = -2$, $c = 1$, so $a^2 + b^2 + c^2 = 4 + 4 + 1 = 9$.
\n
$$
\vec{u} = \frac{a}{\sqrt{a^2 + b^2 + c^2}} \vec{l} + \frac{b}{\sqrt{a^2 + b^2 + c^2}} \vec{j} + \frac{c}{\sqrt{a^2 + b^2 + c^2}} \vec{k} = \frac{2}{3} \vec{l} - \frac{2}{3} \vec{j} + \frac{1}{3} \vec{k}
$$

Theorem: Assume $\vec{v}, \vec{w} \neq \vec{0}$. Then $\vec{v} \cdot \vec{w} = 0$ if and only if \vec{v} and \vec{w} are perpendicular.

Cross Product:

$$
\vec{v}_1 = \langle a_1, b_1, c_1 \rangle = a_1 \vec{i} + b_1 \vec{j} + c_1 \vec{k}
$$
\n
$$
\vec{v}_2 = \langle a_2, b_2, c_2 \rangle = a_2 \vec{i} + b_2 \vec{j} + c_2 \vec{k}
$$
\n
$$
\vec{v}_1 \times \vec{v}_2 = det \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}
$$
 (Note: The "det" is often omitted)

Ex. Find $< 2,1, -3 > < -1,1,2 >$

$$
\langle 2,1,-3 \rangle \times \langle -1,1,2 \rangle = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -3 \\ -1 & 1 & 2 \end{vmatrix}
$$

= $\begin{vmatrix} 1 & -3 \\ 1 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & -3 \\ -1 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} \vec{k}$
= $[(1)(2) - (1)(-3)]\vec{i} - [(2)(2) - (-1)(-3)]\vec{j} + [(2)(1) - (-1)(1)]\vec{k}$
= $5\vec{i} - \vec{j} + 3\vec{k}$.

Notice that the answer is a vector, NOT a number (ie a scalar).

Properties:

1. $\vec{v} \times \vec{w}$ is perpendicular to \vec{v} and \vec{w} (hence perpendicular to the plane containing \vec{v} and \vec{w})

2. $\vec{v} \times \vec{w} = 0$ if and only if \vec{v} and \vec{w} are parallel or $\vec{v} = 0$ or $\vec{w} = 0$.

$$
3. \quad \vec{v} \times \vec{w} = -\vec{w} \times \vec{v}.
$$

2. Finding an equation of a line in R^3

Given a point (x_0, y_0, z_0) and a direction vector $\vec{v} =$, we can write a vector equation of a line through (x_0, y_0, z_0) in the direction of $\vec{v} = b$ y:

$$
\vec{R}(t) = \langle x_0, y_0, z_0 \rangle + t\vec{v} = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle; \quad t \in \mathbb{R}.
$$

This **vector form of a line** can also be written as:

This line can also be written in parametric form:

$$
x = x_0 + at
$$

$$
y = y_0 + bt
$$

$$
z = z_0 + ct
$$

where $t \in \mathbb{R}$.

Ex. Find a vector equation and parametric equations for the line through the points $P = (2, -3, -1)$ and $Q = (-1, 2, 3)$.

First we find a direction vector from P to Q (or from Q to P)

Direction Vector
$$
\vec{v} = \overrightarrow{PQ} = \vec{Q} - \vec{P} = < -1 - 2, 2 - (-3), 3 - (-1) >
$$

= < -3,5,4 >.

Now we use either point, say, $(2, -3, -1) = (x_0, y_0, z_0)$:

 $\vec{R}(t) = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle = \langle 2 - 3t, -3 + 5t, -1 + 4t \rangle; t \in \mathbb{R}.$

In parametric equations this becomes:

 $x = x_0 + at = 2 - 3t$ $v = v_0 + at = -3 + 5t$ $z = z_0 + at = -1 + 4t$ where $t \in \mathbb{R}$.

Equations of line segments from P to Q .

If we find an equation of the line through the points P and Q by finding the direction vector $\vec{v} = \vec{P}\vec{Q} = \langle a, b, c \rangle = \vec{Q} - \vec{P}$, and use the starting point $P = (x_0, y_0, z_0)$ as our point on the line then the vector equation of the line is $\vec{R}(t) = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle; t \in \mathbb{R}.$

If the equation of the line through P and Q is found this way (there are an infinite number of equations of lines that go through P and Q) then the line segment from P to Q is given by

$$
\vec{R}(t) = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle; \quad 0 \le t \le 1.
$$

Notice that at $t = 0$; $\vec{R}(0) = \langle x_0, y_0, z_0 \rangle = \vec{P}$

$$
t = 1; \quad \vec{R}(1) = \langle x_0 + a, y_0 + b, z_0 + c \rangle = \vec{Q}
$$

since $\vec{v} = \overrightarrow{PQ} = \vec{Q} - \vec{P}$.

Alternatively, we can find a line segment from P to Q by taking:

$$
\vec{R}(t) = t\vec{P} + (1-t)\vec{Q}; \quad 0 \le t \le 1 \quad \text{(Starts at } Q \text{, end at } P); \qquad \text{or}
$$
\n
$$
\vec{R}(t) = t\vec{Q} + (1-t)\vec{P}; \quad 0 \le t \le 1 \quad \text{(Starts at } P \text{, end at } Q).
$$

Ex. Find an equation for the line segment between $P = (2, -3, -1)$ and $Q = (-1,2,3).$

In the previous example we found an equation of the line through P and Q by finding the direction $\vec{v} = \overrightarrow{PQ} = \langle a, b, c \rangle = \vec{Q} - \vec{P}$, and using the starting point $P = (2, -3, -1)$. Thus an equation for the line segment between P and Q is

$$
\begin{aligned} \vec{R}(t) &= < x_0 + at, y_0 + bt, \ z_0 + ct > \\ &= < 2 - 3t, -3 + 5t, -1 + 4t >; \qquad 0 \le t \le 1. \end{aligned}
$$

Using the second approach we could find an equation for the line segment by

$$
\vec{R}(t) = t\vec{P} + (1 - t)\vec{Q} = t < 2, -3, -1 > + (1 - t) < -1, 2, 3 >; 0 \le t \le 1
$$
\n
$$
= < -1 + 3t, \ 2 - 5t, \ 3 - 4t >; \ 0 \le t \le 1 \text{ (Starts at } Q)
$$

or

$$
\vec{R}(t) = t\vec{Q} + (1-t)\vec{P} = t < -1,2,3 > +(1-t) < 2, -3, -1 >; \quad 0 \le t \le 1
$$

=< 2 - 3t, -3 + 5t, -1 + 4t >; \quad 0 \le t \le 1. (Starts at *P*).

3. Equations of planes in R^3

In order to write an equation for a plane in R^3 we need a point (x_0, y_0, z_0) and a vector, \vec{n} , perpendicular to the plane, called a "normal" vector.

For any general point (x, y, z) on the plane we have:

$$
\vec{P} = \langle x, y, z \rangle, \quad \vec{P}_0 = \langle x_0, y_0, z_0 \rangle, \quad \vec{n} = \langle A, B, C \rangle,
$$

$$
\vec{n} \cdot \overrightarrow{P_0 P} = \vec{n} \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0
$$

$$
A(x - x_0) + B(y - y_0) + B(z - z_0) = 0.
$$

$$
A(2,1,1), B(0,4,1), C(-2,1,4).
$$

$$
\overrightarrow{AB} = 0 - 2, 4 - 1, 1 - 1 > = 0 - 2, 3, 0 >
$$

$$
\overrightarrow{AC} = 0 - 2 - 2, 1 - 1, 4 - 1 > = 0 - 4, 0, 3 > 0.
$$

 \overrightarrow{AB} and \overrightarrow{AC} are vectors that lie in the plane containing $A(2,1,1), B(0,4,1), C(-2,1,4).$

How do we find a vector, \vec{n} , perpendicular to the plane containing A, B, C?

$$
\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 3 & 0 \\ -4 & 0 & 3 \end{vmatrix}
$$

= $\begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix} \vec{i} - \begin{vmatrix} -2 & 0 \\ -4 & 3 \end{vmatrix} \vec{j} + \begin{vmatrix} -2 & 3 \\ -4 & 0 \end{vmatrix} \vec{k}$
= $9\vec{i} - (-6)\vec{j} + (-(-12))\vec{k} = 9\vec{i} + 6\vec{j} + 12\vec{k}.$

 $\vec{n} = 5, 6, 12 > = 5, A, B, C > 0$.

Using any point on the plane we can take $(x_0, y_0, z_0) = (2, 1, 1)$. An equation of the plane: $A(x - x_0) + B(y - y_0) + B(z - z_0) = 0$

$$
9(x-2) + 6(y-1) + 12(z-1) = 0;
$$

Or

$$
9x + 6y + 12z - 36 = 0
$$

Or
$$
3x + 2y + 4z = 12
$$
.

4. Equations of Cylinders and a few common Quadric Surfaces in R^3

Def. A **cylinder** consists of all lines that are parallel to a given line and pass through a given plane curve.

Notice that if an equation in R^3 contains only 2 variables, the graph is a cylinder.

When picturing a graph of an equation in R^3 it is often helpful to examine the level curves ($z = constant$) and sections ($y = constant$ and $x = constant$) of the graph.

Ex. Sketch $z = x^2$ in R^3

In the xz plane ($y = 0$) this is just the parabola $z = x^2$. Since the function does not have a "y" in it, every cross sectional of the plane $y = k$ is the same parabola. This is called a parabolic cylinder. In fact, if one of x, y, z is missing from the equation, then you will get a cylinder.

Ex. Sketch in \mathbb{R}^3 : a) $x^2 + y^2 = 1$ b) $y^2 + z^2 = 1$

a) $x^2 + y^2 = 1$ is a circle of radius 1 in $z = k$ plane.

b) $y^2 + z^2 = 1$ is a circle of radius 1 in $x = k$ plane. \mathcal{X}

The graph of any equation of the form: z^2 $rac{z^2}{a^2} = \frac{x^2}{b^2}$ $rac{x^2}{b^2} + \frac{y^2}{c^2}$ $\frac{z}{c^2}$ is a cone.

Ex. sketch $z^2 = \frac{x^2}{2}$ $\frac{x^2}{2} + \frac{y^2}{3}$ $\frac{1}{3}$, using level curves and sections.

$$
z = k: \quad k^2 = \frac{x^2}{2} + \frac{y^2}{3}
$$
 slices II to xy plane are ellipses if $k \neq 0$ *,*

if $k = 0$, then it's a point.

$$
x = k: \ \ z^2 - \frac{y^2}{3} = \frac{k^2}{2}
$$

slices II to yz plane are hyperbolas if $k \neq 0$,

major axis is the z axis.

$$
y = k
$$
: $z^2 - \frac{x^2}{2} = \frac{k^2}{3}$

slices II to xz plane are hyperbolas if $k \neq 0$,

major axis is the z axis.

The graph of any equation of the form Z $\frac{z}{c} = \frac{x^2}{a^2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $\frac{z}{b^2}$ is an elliptic paraboloid.

Ex. Sketch $f(x, y) = x^2 + 2y^2$. Domain = \mathbb{R}^2 ; range $z \ge 0$.

Level curves for $z = k > 0$ are ellipses.

Sections of the graph of f are parabolas.

For example, if $y = k$, then we get:

$$
z = x^2 + 2k^2
$$

If $x = k$, then we get:

Ex. Sketch a graph of $z = -2x^2 - 2y^2$ and $z = 8 - 2x^2 - 2y^2$.

The graph of any equation of the form x^2 $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $rac{y^2}{b^2} + \frac{z^2}{c^2}$ $\frac{z}{c^2} = 1$ is an ellipsoid (when $a = b = c$ you get a sphere).

Ex. Use the level curves and sections to sketch $x^2 + \frac{y^2}{2}$ $\frac{y^2}{9} + \frac{z^2}{4}$ $\frac{2}{4} = 1.$

When $z = 0$: $x^2 + \frac{y^2}{9}$ $\frac{\sqrt{9}}{9}$ = 1 ellipse in the xy plane

$$
z = k
$$
: $x^2 + \frac{y^2}{9} + \frac{k^2}{4} = 1$

$$
x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4}
$$
 is an ellipse if $-2 < k < 2$. As $k \to 2$

or −2 the major and minor axes are

shrinking to 0. For example,

$$
k = 1: x^2 + \frac{y^2}{9} = \frac{3}{4} \Rightarrow \frac{x^2}{\frac{3}{4}} + \frac{y^2}{\frac{27}{4}} = 1.
$$

At $x=0$: y^2 $\frac{y^2}{9} + \frac{z^2}{4}$ 4 ellipse in yz plane At $x = k : \frac{y^2}{2}$ $\frac{y^2}{9} + \frac{z^2}{4}$ $\frac{z^2}{4} = 1 - k^2$ - 1 < k < 1 ellipse

At $y = 0$: $x^2 + \frac{z^2}{4}$ $\frac{z^2}{4} = 1$ ellipse in the xz plane At $y = k$: $x^2 + \frac{z^2}{4}$ $\frac{z^2}{4} = 1 - \frac{k^2}{9}$ $\frac{k}{9}$ - 3 < k < 3 ellipse

The graph of $z = \frac{x^2}{a^2}$ $rac{x^2}{a^2} - \frac{y^2}{b^2}$ $\frac{y^2}{b^2}$ or $z = \frac{y^2}{a^2}$ $rac{y^2}{a^2} - \frac{x^2}{b^2}$ $\frac{x}{b^2}$ is a hyperbolic paraboloid (ie a saddle). Ex. Use level curves and sections to sketch $z = y^2 - x^2$.

Level curves: $k = y^2 - x^2$:

$$
y = k; \quad z = k^2 - x^2,
$$

parabolas in xz plane opening in negative z direction.

$$
x = k; \ z = y^2 - k^2
$$

parabolas in yz plane opening opening in positive z direction.

Hyperbolic Paraboloid (Saddle)

 $z = y^2 - 1$

 \mathcal{Y}

The graph of $\frac{x^2}{a^2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $\frac{y^2}{b^2} - \frac{z^2}{c^2}$ $\frac{z}{c^2} = 1$ is a hyperboloid of one sheet.

Ex. Sketch $\frac{x^2}{4}$ $\frac{x^2}{4} + y^2 - \frac{z^2}{4}$ $\frac{2}{4}$ = 1, using level curves and sections.

At
$$
z = k
$$
: $\frac{x^2}{4} + y^2 = 1 + \frac{k^2}{4}$ ellipse in slices II *xy* plane
\nAt $y = 0$: $\frac{x^2}{4} - \frac{z^2}{4} = 1$ hyperbola in slices II *xz* plane
\nAt $y = k$: $\frac{x^2}{4} - \frac{z^2}{4} = 1 - k^2$, hyperbolas in *xz* plane if $k \neq \pm 1$
\n $-1 < k < 1$, major axis is *x* axis; $k < -1$ or $k > 1$, major axis is *z* axis.

At
$$
x = 0
$$
: $y^2 - \frac{z^2}{4} = 1$ hyperbolas in slices II to *yz* plane
At $x = k$: $y^2 - \frac{z^2}{4} = 1 - \frac{k^2}{4}$, hyperbolas in *yz* plane if $k \neq \pm 2$
-2 < k < 2, major axis is *y* axis; $k < -2$ or $k > 2$, major axis is *z* axis.

If $-\frac{x^2}{4}$ $\frac{x^2}{4} + y^2 + \frac{z^2}{4}$ $\frac{2}{4}$ = 1, then the major axis is the *x*-axis (with negative term).