Littlewood's three principles:

- 1. Every measurable set is nearly a finite union of intervals
- 2. Every measurable function is nearly continuous
- 3. Every pointwise convergent sequence of measurable functions is nearly uniformly convergent.

 We have seen Littlewood's first principle already. It takes the form of the theorem:

Theorem: Let E be a measurable set of finite outer measure. Then for each $\epsilon > 0$, there is a finite disjoint collection of open intervals $\{I_k\}_{k=1}^n$ for which if $0 = \bigcup_{k=1}^{n} I_k$ $_{k=1}^{n}$ I_{k} , then

$$
m^*(E\sim O) + m^*(O\sim E) < \epsilon.
$$

A precise statement of Littlewood's third principle is:

Theorem (Egoroff): Assume E has finite measure. Let ${f_n}$ be a sequence of measurable functions on E that converge pointwise on E to the real valued function f. Then for each $\epsilon > 0$, there is a closed set $F \subseteq E$ for which ${f_n} \rightarrow f$ uniformly on F and $m(E \sim F) < \epsilon$.

To prove Egoroff's theorem we use the following:

Lemma: Under the assumptions of Egoroff's theorem, for each $\alpha > 0$ and $\delta>0$, there is a measurable subset $B\subseteq E$ and an $N\in \mathbb{Z}^+$ such that if $n\geq N$ then

$$
|f_n - f| < \alpha \text{ on } B \quad \text{and} \quad m(E \sim B) < \delta.
$$

Proof: Since $\{f_n\} \to f$ pointwise, f is measurable. Hence the set $\{x \in E \mid |f(x) - f_k(x)| < \alpha\}$ is measurable.

Let
$$
E_n = \{x \in E \mid |f(x) - f_k(x)| < \alpha \text{ for all } k \geq n\}.
$$
 Then $E_n = \bigcap_{k=n}^{\infty} \{x \in E \mid |f(x) - f_k(x)| < \alpha\}$

is measurable because it's the countable intersection of measurable sets.

Notice that $E_n \subseteq E_{n+1} \subseteq \cdots$ is an ascending collection of sets with: $E = \bigcup_{n=1}^{\infty} E_n$ $\sum\limits_{n=1}^\infty E_n$ since $\,\{f_n\}\rightarrow f$ pointwise on E .

By the continuity of measure we know that: $\; m(E) = \; \lim \;$ $\lim_{n\to\infty} m(E_n)$.

Since $m(E) < ∞$, we can choose an N for which $m(E) - m(E_N) < \delta$. Define $B = E_N$, then by the excision property:

$$
m(E \sim B) = m(E) - m(B) = m(E) - m(E_N) < \delta.
$$

Proof of Egoroff's theorem.

Using the previous lemma, with $\alpha = \frac{1}{n}$ $\frac{1}{n}$ and $\delta = \frac{\epsilon}{2^{n-1}}$ $\frac{e}{2^{n+1}}$, Let B_n be the measurable subset of E and $N(n)$ which satisfies the conclusion of the lemma.

Thus:
$$
m(E \sim B_n) < \frac{\epsilon}{2^{n+1}}
$$
 and $|f_k - f| < \frac{1}{n}$ on B_n for all $k \ge N(n)$.

Define:
$$
B = \bigcap_{n=1}^{\infty} B_n
$$
.
\nThen $m(E \sim B) = m(\bigcup_{n=1}^{\infty} (E \sim B_n))$
\n $\leq \sum_{n=1}^{\infty} m(E \sim B_n) < \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} = \frac{\epsilon}{2}$.

Now let's show $\{f_n\} \to f$ uniformly on B.

Let $\epsilon > 0$. Choose an index n_0 such that 1 n_{0} $< \epsilon$.

We have: $|f_k - f| < \frac{1}{n_\ell}$ $\frac{1}{n_0}$ on B_{n_0} for all $k \geq N(n_0)$.

However, $B\subseteq B_{n_0}$ and 1 n_{0} $< \epsilon$ so $|f_k - f| < \epsilon$ on *B* for all $k \ge N(n_0)$.

Thus $\{f_n\} \to f$ uniformly on B and $(m(E \sim B) < \frac{\epsilon}{2})$ $\frac{c}{2}$.

Recall that one of the equivalent definitions of measurability of a set E said that for $\epsilon > 0$, there is a closed set $F \subseteq E$ for which $m(E{\sim}F) < \frac{\epsilon}{2}$ $\frac{c}{2}$.

So there is a closed set $F \subseteq B$ with $(B \sim F) < \frac{\epsilon}{2}$ $\frac{c}{2}$.

 $F \subseteq B \subseteq E$ so $E \sim F = E \sim B \cup B \sim F$. $m(E \sim F) = m(E \sim B) + m(B \sim F) = \frac{\epsilon}{2}$ $\frac{\epsilon}{2} + \frac{\epsilon}{2}$ $\frac{\epsilon}{2} = \epsilon$.

Thus $m(E \sim F) < \epsilon$ and $\{f_n\} \rightarrow f$ uniformly on F.

Ex. Let $f_n(x) = x^n$ $0 \le x \le 1$. Then $\{f_n\} \to f$ pointwise where $f(x) = 0$ if $0 \le x < 1$ $= 1$ if $x = 1$.

 ${f_n}$ does not converge uniformly to f on $0 \le x \le 1$, but it's easy to show that ${f_n}$ converges uniformly to $f(x) = 0$, for $0 \le x \le 1 - \epsilon$, for any $0 < \epsilon < 1$. Littlewood's second principle is captured in:

Lusin's Theorem: Let f be a real valued measurable function on E . Then for each $\epsilon > 0$ there is a continuous function g on $\mathbb R$ and a closed set $F \subseteq E$ for which: $f = g$ on F and $m(E \sim F) < \epsilon$.

First let's prove this for simple functions.

Proof: Let $c_1, c_2, ..., c_n$ be the finite distinct values of f taken on $E_1, E_2, ..., E_n$, disjoint measurable sets.

We can find closed sets $F_1, F_2, ..., F_n$ such that $F_k \subseteq E_k$ and $m(E_k{\sim}F_k) < \frac{\epsilon}{n}$ \overline{n} for $1 \leq k \leq n$.

Let $F = \bigcup_{k=1}^n F_k$ $\sum_{k=1}^n F_k$.

 F is closed because each F_k is and since $\{E_k\}_{k=1}^n$ are disjoint:

$$
m(E \sim F) = m(\bigcup_{k=1}^n (E_k \sim F_k)) = \sum_{k=1}^n m((E_k \sim F_k)) < \epsilon.
$$

Define g on F to take the value c_k on F_k for $1 \leq k \leq n$.

 i is continuous on F and can be extended to a continuous function on $\mathbb R$ $(G = \mathbb{R} \sim F$ is open so is a countable union of disjoint open intervals whose endpoints are in F . Just define q linearly along the open interval between the values of q at the endpoints).

Proof of Lusin's theorem:

First let $m(E) < \infty$.

According to the Simple Approximation Theorem, there is a sequence of simple function on E , $\{f_n\}$ that converges pointwise to f .

From the preceding proof, for each f_n there is a continuous function g_n such that $g_n = f_n$ on F_n and $m(E \sim F_n) < \frac{\epsilon}{2^{n-1}}$ $\frac{c}{2^{n+1}}$.

According to Egoroff's theorem there is a closed set $F_0 \subseteq E$ such that $\{f_n\}$ converges uniformly to f on F_0 and $m(E{\,\sim\,}F_0) < \frac{\epsilon}{2}$ $\frac{c}{2}$.

Define $F=\bigcap_{n=0}^\infty F_n$ $\sum_{n=0}^{\infty} F_n$.

Then we have:
$$
m(E \sim F) = m((E \sim F_0) \cup (\bigcup_{n=1}^{\infty} (E \sim F_n)))
$$

\n $\leq m(E \sim F_0) + \sum_{n=1}^{\infty} m(E \sim F_n)$
\n $< \frac{\epsilon}{2} + \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} = \epsilon.$

The set F is closed because it's the intersection of closed sets.

 f_n is continuous on F since $F \subseteq F_n$ and $f_n = g_n$ on F_n .

 ${f_n}$ converges uniformly to f on F since $F \subseteq F_0$ and the uniform limit of continuous functions is continuous, so the restriction of f to F is continuous on F .

Finally, there is a continuous function g on $\mathbb R$ whose restriction to F equals f . Thus $g = f$ on F and $m(E \sim F) < \epsilon$.

If $m(E) = \infty$, define $E_n = E \cap [n, n + 1)$ for $n \in \mathbb{Z}$.

Then ${E_n}_{n \in \mathbb{Z}}$ are disjoint sets of finite measure.

Thus by Lusin's theorem for sets of finite measure there exists closed sets F_n and continuous functions $g_n: F_n \to \mathbb{R}$ such that

$$
m(E_n \sim F_n) < \frac{1}{3} \left(\frac{\epsilon}{2^{|n|}} \right) \quad \text{and } f = g_n \text{ on } F_n.
$$

Let $F = \bigcup_{n \in \mathbb{Z}} F_n$ and $g(x) = \sum_{n \in \mathbb{Z}} g_n(x) \chi_{F_n}(x)$.

Then q is continuous on F .

 F is also closed.

Since F is closed we can extend g to a continuous function on \mathbb{R} .

Thus $f = g$ on F and

$$
m(E \sim F) = m(\bigcup_{n \in \mathbb{Z}} (E_n \sim F_n)) = \sum_{n \in \mathbb{Z}} m(E_n \sim F_n)
$$

$$
= \sum_{n \in \mathbb{Z}} \frac{1}{3} \left(\frac{\epsilon}{2^{|n|}}\right) = \frac{\epsilon}{3} \left(\sum_{n=0}^{\infty} \frac{1}{2^n} + 1 + \sum_{n=0}^{\infty} \frac{1}{2^n}\right)
$$

$$
= \frac{\epsilon}{3} (3) = \epsilon.
$$