Littlewood's three principles:

- 1. Every measurable set is nearly a finite union of intervals
- 2. Every measurable function is nearly continuous
- 3. Every pointwise convergent sequence of measurable functions is nearly uniformly convergent.

We have seen Littlewood's first principle already. It takes the form of the theorem:

Theorem: Let *E* be a measurable set of finite outer measure. Then for each $\epsilon > 0$, there is a finite disjoint collection of open intervals $\{I_k\}_{k=1}^n$ for which if $O = \bigcup_{k=1}^n I_k$, then

$$m^*(E \sim 0) + m^*(0 \sim E) < \epsilon.$$

A precise statement of Littlewood's third principle is:

Theorem (Egoroff): Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converge pointwise on E to the real valued function f. Then for each $\epsilon > 0$, there is a closed set $F \subseteq E$ for which $\{f_n\} \rightarrow f$ uniformly on F and $m(E \sim F) < \epsilon$.

To prove Egoroff's theorem we use the following:

Lemma: Under the assumptions of Egoroff's theorem, for each $\alpha > 0$ and $\delta > 0$, there is a measurable subset $B \subseteq E$ and an $N \in \mathbb{Z}^+$ such that if $n \ge N$ then

$$|f_n - f| < \alpha \text{ on } B$$
 and $m(E \sim B) < \delta$.

Proof: Since $\{f_n\} \to f$ pointwise, f is measurable. Hence the set $\{x \in E \mid |f(x) - f_k(x)| < \alpha\}$ is measurable.

Let
$$E_n = \{x \in E \mid |f(x) - f_k(x)| < \alpha \text{ for all } k \ge n\}.$$

Then $E_n = \bigcap_{k=n}^{\infty} \{x \in E \mid |f(x) - f_k(x)| < \alpha\}$

is measurable because it's the countable intersection of measurable sets.

Notice that $E_n \subseteq E_{n+1} \subseteq \cdots$ is an ascending collection of sets with: $E = \bigcup_{n=1}^{\infty} E_n$ since $\{f_n\} \to f$ pointwise on E.

By the continuity of measure we know that: $m(E) = \lim_{n \to \infty} m(E_n)$.

Since $m(E) < \infty$, we can choose an N for which $m(E) - m(E_N) < \delta$. Define $B = E_N$, then by the excision property:

$$m(E \sim B) = m(E) - m(B) = m(E) - m(E_N) < \delta.$$

Proof of Egoroff's theorem.

Using the previous lemma, with $\alpha = \frac{1}{n}$ and $\delta = \frac{\epsilon}{2^{n+1}}$, Let B_n be the measurable subset of E and N(n) which satisfies the conclusion of the lemma.

Thus:
$$m(E \sim B_n) < rac{\epsilon}{2^{n+1}}$$
 and $|f_k - f| < rac{1}{n}$ on B_n for all $k \ge N(n)$.

Define:
$$B = \bigcap_{n=1}^{\infty} B_n$$
.
Then $m(E \sim B) = m(\bigcup_{n=1}^{\infty} (E \sim B_n))$
 $\leq \sum_{n=1}^{\infty} m(E \sim B_n) < \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} = \frac{\epsilon}{2}$.

Now let's show $\{f_n\} \to f$ uniformly on B.

Let $\epsilon > 0$. Choose an index n_0 such that $\frac{1}{n_0} < \epsilon$.

We have: $|f_k - f| < \frac{1}{n_0}$ on B_{n_0} for all $k \ge N(n_0)$.

However, $B \subseteq B_{n_0}$ and $\frac{1}{n_0} < \epsilon$ so $|f_k - f| < \epsilon$ on B for all $k \ge N(n_0)$.

Thus $\{f_n\} \to f$ uniformly on *B* and $m(E \sim B) < \frac{\epsilon}{2}$.

Recall that one of the equivalent definitions of measurability of a set E said that for $\epsilon > 0$, there is a closed set $F \subseteq E$ for which $m(E \sim F) < \frac{\epsilon}{2}$.

So there is a closed set $F \subseteq B$ with $(B \sim F) < \frac{\epsilon}{2}$.

 $F \subseteq B \subseteq E \text{ so } E \sim F = E \sim B \cup B \sim F.$ $m(E \sim F) = m(E \sim B) + m(B \sim F) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

Thus $m(E \sim F) < \epsilon$ and $\{f_n\} \rightarrow f$ uniformly on F.

Ex. Let $f_n(x) = x^n$ $0 \le x \le 1$. Then $\{f_n\} \to f$ pointwise where f(x) = 0 if $0 \le x < 1$ = 1 if x = 1.

 $\{f_n\}$ does not converge uniformly to f on $0 \le x \le 1$, but it's easy to show that $\{f_n\}$ converges uniformly to f(x) = 0, for $0 \le x \le 1 - \epsilon$, for any $0 < \epsilon < 1$.

Littlewood's second principle is captured in:

Lusin's Theorem: Let f be a real valued measurable function on E. Then for each $\epsilon > 0$ there is a continuous function g on \mathbb{R} and a closed set $F \subseteq E$ for which: f = g on F and $m(E \sim F) < \epsilon$.

First let's prove this for simple functions.

Proof: Let $c_1, c_2, ..., c_n$ be the finite distinct values of f taken on $E_1, E_2, ..., E_n$, disjoint measurable sets.

We can find closed sets $F_1, F_2, ..., F_n$ such that $F_k \subseteq E_k$ and $m(E_k \sim F_k) < \frac{\epsilon}{n}$ for $1 \le k \le n$.

Let $F = \bigcup_{k=1}^{n} F_k$.

F is closed because each F_k is and since $\{E_k\}_{k=1}^n$ are disjoint:

$$m(E \sim F) = m(\bigcup_{k=1}^{n} (E_k \sim F_k)) = \sum_{k=1}^{n} m((E_k \sim F_k)) < \epsilon.$$

Define g on F to take the value c_k on F_k for $1 \le k \le n$.

g is continuous on F and can be extended to a continuous function on \mathbb{R} ($G = \mathbb{R} \sim F$ is open so is a countable union of disjoint open intervals whose endpoints are in F. Just define g linearly along the open interval between the values of g at the endpoints).

Proof of Lusin's theorem:

First let $m(E) < \infty$.

According to the Simple Approximation Theorem, there is a sequence of simple function on E, $\{f_n\}$ that converges pointwise to f.

From the preceding proof, for each f_n there is a continuous function g_n such that $g_n = f_n$ on F_n and $m(E \sim F_n) < \frac{\epsilon}{2^{n+1}}$.

According to Egoroff's theorem there is a closed set $F_0 \subseteq E$ such that $\{f_n\}$ converges uniformly to f on F_0 and $m(E \sim F_0) < \frac{\epsilon}{2}$.

Define $F = \bigcap_{n=0}^{\infty} F_n$.

Then we have:
$$m(E \sim F) = m((E \sim F_0) \cup (\bigcup_{n=1}^{\infty} (E \sim F_n)))$$

 $\leq m(E \sim F_0) + \sum_{n=1}^{\infty} m(E \sim F_n)$
 $< \frac{\epsilon}{2} + \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} = \epsilon.$

The set *F* is closed because it's the intersection of closed sets.

 f_n is continuous on F since $F \subseteq F_n$ and $f_n = g_n$ on F_n .

 $\{f_n\}$ converges uniformly to f on F since $F \subseteq F_0$ and the uniform limit of continuous functions is continuous, so the restriction of f to F is continuous on F.

Finally, there is a continuous function g on \mathbb{R} whose restriction to F equals f. Thus g = f on F and $m(E \sim F) < \epsilon$. If $m(E) = \infty$, define $E_n = E \cap [n, n + 1)$ for $n \in \mathbb{Z}$.

Then $\{E_n\}_{n\in\mathbb{Z}}$ are disjoint sets of finite measure.

Thus by Lusin's theorem for sets of finite measure there exists closed sets F_n and continuous functions $g_n: F_n \to \mathbb{R}$ such that

$$m(E_n \sim F_n) < \frac{1}{3} \left(\frac{\epsilon}{2^{|n|}} \right)$$
 and $f = g_n$ on F_n .

Let $F = \bigcup_{n \in \mathbb{Z}} F_n$ and $g(x) = \sum_{n \in \mathbb{Z}} g_n(x) \chi_{F_n}(x)$.

Then g is continuous on F.

F is also closed.

Since *F* is closed we can extend *g* to a continuous function on \mathbb{R} .

Thus f = g on F and

$$m(E \sim F) = m(\bigcup_{n \in \mathbb{Z}} (E_n \sim F_n)) = \sum_{n \in \mathbb{Z}} m(E_n \sim F_n)$$
$$= \sum_{n \in \mathbb{Z}} \frac{1}{3} \left(\frac{\epsilon}{2^{|n|}}\right) = \frac{\epsilon}{3} \left(\sum_{n=1}^{\infty} \frac{1}{2^n} + 1 + \sum_{n=1}^{\infty} \frac{1}{2^n}\right)$$
$$= \frac{\epsilon}{3} (3) = \epsilon.$$