The Simple Approximation Theorem

- Def. Given a sequence of functions $\{f_n\}$ with common domain E, a function f on E and a subset $G \subseteq E$, we say:
 - 1) The sequence $\{f_n\}$ converges to f pointwise on G if $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in G$.
 - 2) The sequence $\{f_n\}$ converges to f pointwise a.e. on G if it converges to f pointwise on $G \sim H$, where m(H) = 0.
 - 3) The sequence $\{f_n\}$ converges to f uniformly on G if for each $\epsilon > 0$, there is an N such that if $n \ge N$ then:

$$|f(x) - f_n(x)| < \epsilon \text{ on } G$$

The pointwise limit of continuous functions need not be continuous.

Ex. In the example below prove that $f_n \rightarrow f$ pointwise on $0 \le x \le 1$ but not uniformly.

$$f_n(x) = x^n; \ 0 \le x \le 1.$$

 $f(x) = 0 \quad \text{if } 0 \le x < 1$
 $= 1 \quad \text{if } x = 1$

To prove pointwise convergence we must show that given any $\epsilon > 0$ there exists an N such that if $n \ge N$ then $|f(x) - f_n(x)| < \epsilon$.

Note: for pointwise convergence N can depend on the point x.

At
$$x = 0$$
, $f_n(0) = 0 = f(0)$ for all n , thus $f_n(0) \to f(0)$.

If
$$0 < x < 1$$
, then $f(x) = 0$.
 $|f(x) - f_n(x)| = |0 - x^n| = x^n$; since $0 < x < 1$
So solve $x^n < \epsilon$ for n .
 $n(lnx) < ln\epsilon$

$$(lnx) < ln\epsilon$$

 $n > \frac{ln\epsilon}{\ln(x)}$.

So choose $N > \frac{\ln \epsilon}{\ln(x)}$.

Notice our formula for N depends on the point x.

So if $N > \frac{ln\epsilon}{\ln(x)}$ and $n \ge N > \frac{ln\epsilon}{\ln(x)}$ Then $n > \frac{ln\epsilon}{\ln(x)}$ $n(lnx) < ln\epsilon$ $x^n < \epsilon$ $|0 - x^n| < \epsilon$.

So $f_n \to f$ pointwise on $0 \le x < 1$.

At x = 1, $f_n(1) = 1 = f(1)$ for all n so $f_n \to f$ pointwise on $0 \le x \le 1$.

Notice that $f_n(x)$ does not converge uniformly to f(x) on [0,1] because:

 $|0 - x^n| < \epsilon$ is equivalent to $n > \frac{\ln \epsilon}{\ln(x)}$, and as $x \to 1$, $\frac{\ln \epsilon}{\ln(x)}$ is unbounded above for any fixed ϵ .

Thus there isn't any fixed N such that $n \ge N \Rightarrow |0 - x^n| < \epsilon$ for all $0 \le x \le 1$. Thus $f_n(x)$ doesn't converges uniformly to f(x) for $0 \le x \le 1$. Note: $f_n(x)$ converges uniformly to f(x) for $0 \le x \le 1 - \alpha$, for any $0 < \alpha < 1$.

This is because
$$\frac{\ln\epsilon}{\ln(x)} \leq \frac{\ln\epsilon}{\ln(1-\alpha)}$$
, for all $0 \leq x \leq 1-\alpha$, and $0 < \epsilon \leq 1$.
So $N > \frac{\ln\epsilon}{\ln\alpha}$ would work for all $0 \leq x \leq 1-\alpha$.

The pointwise limit of Riemann integrable functions may not be Riemann integrable.

 $\{f_n\}$ converges pointwise to $f(x) = \frac{1}{x}$ on $0 < x \le 1$ (which is not Riemann integrable).

Note: The convergence is not uniform. For example, if $\epsilon = 1$ and $0 < x < \frac{1}{n}$; $|f_n(x) - f(x)| = |n - \frac{1}{x}|$, which is unbounded for all n.

However, we do have:

- Prop. Let $\{f_j\}$ be a sequence of measurable functions on E that converges pointwise a.e. on E to a function f. Then f is measurable.
- Proof: Suppose $\{f_j\}$ converges pointwise to f on $E \sim A$, where $m(A) = 0, A \subseteq E$.

From an earlier proposition we know that f is measurable if, and only if, its restriction to $E \sim A$ is measurable.

Thus, by replacing *E* by $E \sim A$, we can assume the sequence converges pointwise on *E*.

We must show $\{x \in E | f(x) < c\}$ is measurable.

For a point $x \in E$, since $\lim_{j \to \infty} f_j(x) = f(x)$,

f(x) < c if, and only if, there exist $n, k \in \mathbb{Z}^+$ such that:

But for any $n, j \in \mathbb{Z}^+$, $\{x \in E \mid f_j(x) < c - \frac{1}{n}\}$ is measurable since f_j is measurable.

Thus, for any k,

$$\bigcap_{j=k}^{\infty} \{ x \in E \mid f_j(x) < c - \frac{1}{n} \} = \{ x \in E \mid f(x) < c - \frac{1}{n} \}$$

is also measurable.

Now notice:

$$\{x \in E | f(x) < c\} = \bigcup_{1 \le k, n < \infty} [\bigcap_{j=k}^{\infty} \{x \in E | f_j(x) < c - \frac{1}{n}\}].$$

So f(x) is measurable because the RHS is made up of countable unions and intersections of measurable sets.

Def. If A is any set, the **characteristic function** of A, χ_A , is the function on \mathbb{R} defined by:

$$\chi_A(x) = 1$$
 if $x \in A$
= 0 if $x \notin A$.

 χ_A is measurable if, and only if, A is measurable. Linear combinations of characteristic functions will play a role in Lebesgue integration.

Def. A real valued function φ on a measurable set E is called **simple**

if it is measurable and takes on only a finite number of values.

Notice that linear combinations and products of simple functions are simple functions.

If φ is a simple function on a domain E that takes the values c_1, c_2, \dots, c_n then we can write φ as:

$$\varphi(x) = \sum_{k=1}^{n} c_k \chi_{E_k}(x); \text{ where } E_k = \{x \in E | \varphi(x) = c_k\}.$$

This representation of a simple function as a linear combination of characteristic functions is called the **canonical representation** of the simple function φ .

The Simple Approximation Lemma: Let f be a measurable real valued function on E. Assume f is bounded on E, i.e. there is an $M \ge 0$ for which $|f(x)| \le M$ for all $x \in E$. Then for each $\epsilon > 0$ there are simple functions φ_{ϵ} and ψ_{ϵ} defined on E such that:

$$\varphi_{\epsilon}(x) \leq f(x) \leq \psi_{\epsilon}(x) \text{ and } 0 \leq \psi_{\epsilon}(x) - \varphi_{\epsilon}(x) < \epsilon \text{ on } E.$$

Let $I_j = [y_{j-1}, y_j)$ and $E_j = f^{-1}(I_j)$ Since f is measurable and I_j is measurable, each E_j is measurable.

Define
$$\varphi_{\epsilon} = \sum_{j=1}^{n} y_{j-1} \chi_{E_j}$$
 and $\psi_{\epsilon} = \sum_{j=1}^{n} y_j \chi_{E_j}$.

Let $x \in E$, since $f(E) \subseteq (a, b)$, there is a unique $j, 1 \leq j \leq n$ for which $y_{j-1} \leq f(x) < y_j$ and therefore:

$$\varphi_{\epsilon}(x) = y_{j-1} \le f(x) < y_j = \psi_{\epsilon}(x)$$

But $y_j - y_{j-1} < \epsilon$ so, $0 \le \psi_{\epsilon}(x) - \varphi_{\epsilon}(x) < \epsilon$.

Ex. Let
$$f(x) = x^2$$
 if $-2 < x < 2$ and $x \neq 0$

$$= 2$$
 if $x = 0$.

Approximate f(x) by simple functions φ, ψ where:

$$\varphi \leq f \leq \psi$$
 and $0 \leq \psi - \varphi < 1.1$ on $(-2, 2)$.

Notice 0 < f(x) < 4, so we need a partition of [0, 4] such that each interval has length less than 1.1

One way to do this is: a = 0 < 1 < 2 < 3 < 4 < b

So
$$I_1 = [0, 1)$$

 $I_2 = [1, 2)$
 $I_3 = [2, 3)$
 $I_4 = [3, 4)$
 $\varphi_{\epsilon} = \sum_{j=1}^4 y_{j-1} \chi_{E_j}$ and $\psi_{\epsilon} = \sum_{k=1}^4 y_j \chi_{E_j}$
where $E_j = f^{-1}(I_j)$ $1 \le j \le 4$.

$$\begin{split} E_1 &= f^{-1}(l_1) = \{x \mid 0 \le f(x) < 1\} = \{x \mid 0 \le x^2 < 1, x \ne 0\} \\ &= (-1, 0) \cup (0, 1) \end{split}$$

$$\begin{split} E_2 &= f^{-1}(l_2) = \{x \mid 1 \le f(x) < 2\} = \{x \mid 1 \le x^2 < 2, x \ne 0\} \\ &= (-\sqrt{2}, -1] \cup [1, \sqrt{2}) \end{split}$$

$$\begin{split} E_3 &= f^{-1}(l_3) = \{x \mid 2 \le f(x) < 3\} = \{x \mid 2 \le x^2 < 3\} \cup \{0\} \\ &= (-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}) \cup \{0\} \end{split}$$

$$\begin{split} E_4 &= f^{-1}(l_4) = \{x \mid 3 \le f(x) < 4\} = (-2, -\sqrt{3}] \cup [\sqrt{3}, 2). \end{aligned}$$
So
$$\begin{split} \varphi_{1.1}(x) &= 0 \cdot \chi_{E_1} + 1 \cdot \chi_{E_2} + 2 \cdot \chi_{E_3} + 3 \cdot \chi_{E_4} = \chi_{E_2} + 2\chi_{E_3} + 3\chi_{E_4} \\ \psi_{1.1}(x) &= \chi_{E_1} + 2\chi_{E_2} + 3\chi_{E_3} + 4\chi_{E_4}. \end{split}$$

The Simple Approximation Theorem: An extended real valued function f on a measurable set E is measurable if, and only if, there is a sequence $\{\varphi_n\}$ of simple functions on E which converges pointwise to f on E and has $|\varphi_n(x)| \leq |f(x)|$ on E for all n.

If f is non-negative, we may choose $\{\varphi_n\}$ to be increasing.

Proof: Since each simple function is measurable, and we know from an earlier proposition that the pointwise limit of measurable functions is measurable, f is then measurable.

Now assume f is measurable and let's show we can find a sequence of of simple functions that converges pointwise to it on E.

First let's assume $f \ge 0$ on E. Let $E_n = \{x \in E \mid f(x) \le n\}$.

Then E_n is measurable and the restriction of f to E_n is a non-negative bounded measurable function. By the previous lemma applied to E_n and with $\epsilon = \frac{1}{n}$ we can find simple functions $\varphi_{\epsilon}, \psi_{\epsilon}$:

 $0 \le \varphi_n \le f \le \psi_n$ on E_n and $0 \le \psi_n - \varphi_n < \frac{1}{n}$ on E_n .

Also:

$$0 \le \varphi_n \le f$$
 and $0 \le f - \varphi_n \le \psi_n - \varphi_n <$ on E_n .

We can extend φ_n to all of E by setting $\varphi_n(x) = n$ if f(x) > n. Now $0 \le \varphi_n \le f$ on all of E.

Now let's show $\lim_{n\to\infty} \varphi_n(x) = f(x)$ for $x \in E$.

Case 1: Assume f(x) is finite.

Choose $N \in \mathbb{Z}^+$ such that f(x) < N. Then, $0 \le f(x) - \varphi_n(x) < \frac{1}{n}$ for $n \ge N$. Since if $n \ge N$ and f(x) < N, then $E_n = E$. Thus, $\lim_{n \to \infty} \varphi_n(x) = f(x)$. Case 2: $f(x) = \infty$.

Then
$$\varphi_n(x)=n$$
 for all n , so $\lim_{n o\infty} \varphi_n(x)=f(x).$

By replacing each φ_n with max $\{\varphi_1(x), \dots, \varphi_n(x)\}$ we get $\{\varphi_n\}$ increasing.

The general case follows by expressing f by:

$$f(x) = f^+(x) - f^-(x)$$

where $f^+(x)$ and $f^-(x)$ are both non-negative functions.