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The Simple Approximation Theorem 

 

Def.   Given a sequence of functions {𝑓𝑛} with common domain 𝐸, a function 𝑓 

         on 𝐸 and a subset 𝐺 ⊆ 𝐸, we say: 

1) The sequence {𝒇𝒏} converges to 𝒇 pointwise on 𝑮 if                           

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐺. 

 

2) The sequence {𝒇𝒏} converges to 𝒇 pointwise a.e. on 𝑮 if it converges to 𝑓 

pointwise on 𝐺~𝐻, where 𝑚(𝐻) = 0. 
 

3) The sequence {𝒇𝒏} converges to 𝒇 uniformly on 𝑮 if for each 𝜖 > 0, 

there is an  𝑁 such that if 𝑛 ≥ 𝑁 then:  

|𝑓(𝑥) − 𝑓𝑛(𝑥)| < 𝜖 on 𝐺  

 

The pointwise limit of continuous functions need not be continuous. 

Ex.  In the example below prove that 𝑓𝑛 → 𝑓 pointwise on 0 ≤ 𝑥 ≤ 1 but not 

uniformly. 

       𝑓𝑛(𝑥) = 𝑥𝑛;   0 ≤ 𝑥 ≤ 1.  

        𝑓(𝑥) = 0      if 0 ≤ 𝑥 < 1 

                  = 1      if 𝑥 = 1 

 

To prove pointwise convergence we must show that given any 𝜖 > 0 there exists 

an 𝑁 such that if 𝑛 ≥ 𝑁 then |𝑓(𝑥) − 𝑓𝑛(𝑥)| < 𝜖. 

Note: for pointwise convergence 𝑁 can depend on the point 𝑥. 

At 𝑥 = 0, 𝑓𝑛(0) = 0 = 𝑓(0) for all 𝑛, thus 𝑓𝑛(0) → 𝑓(0). 
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If 0 < 𝑥 < 1, then 𝑓(𝑥) = 0. 

|𝑓(𝑥) − 𝑓𝑛(𝑥)| = |0 − 𝑥𝑛| = 𝑥𝑛;    since 0 < 𝑥 < 1. 

So solve 𝑥𝑛 < 𝜖 for 𝑛. 

          𝑛(𝑙𝑛𝑥) < 𝑙𝑛𝜖   

                    𝑛 >
𝑙𝑛𝜖

ln(𝑥)
 .    

So choose  𝑁 >
𝑙𝑛𝜖

ln(𝑥)
 . 

Notice our formula for 𝑁 depends on the point 𝑥. 

So if 𝑁 >
𝑙𝑛𝜖

ln(𝑥)
  and 𝑛 ≥ 𝑁 >

𝑙𝑛𝜖

ln(𝑥)
 

Then              𝑛 >
𝑙𝑛𝜖

ln(𝑥)
 

          𝑛(𝑙𝑛𝑥) < 𝑙𝑛𝜖   

                  𝑥𝑛 < 𝜖 

        |0 − 𝑥𝑛| < 𝜖.  

 

So  𝑓𝑛 → 𝑓 pointwise on 0 ≤ 𝑥 < 1.  

 

At  𝑥 = 1 , 𝑓𝑛(1) = 1 = 𝑓(1) for all 𝑛 so 𝑓𝑛 → 𝑓 pointwise on 0 ≤ 𝑥 ≤ 1.  

 

 

Notice that 𝑓𝑛(𝑥) does not converge uniformly to 𝑓(𝑥) on [0,1] because: 

|0 − 𝑥𝑛| < 𝜖 is equivalent to 𝑛 >
𝑙𝑛𝜖

ln(𝑥)
 , and as 𝑥 → 1, 

𝑙𝑛𝜖

ln(𝑥)
 is unbounded 

above for any fixed 𝜖. 

Thus there isn’t any fixed 𝑁 such that 𝑛 ≥ 𝑁 ⇒ |0 − 𝑥𝑛| < 𝜖 for all 0 ≤ 𝑥 ≤ 1.  

Thus 𝑓𝑛(𝑥) doesn’t converges uniformly to 𝑓(𝑥) for 0 ≤ 𝑥 ≤ 1. 
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Note: 𝑓𝑛(𝑥) converges uniformly to 𝑓(𝑥) for 0 ≤ 𝑥 ≤ 1 − 𝛼, for any           

0 < 𝛼 < 1.  

This is because 
𝑙𝑛𝜖

ln(𝑥)
≤

𝑙𝑛𝜖

ln(1−𝛼)
 , for all 0 ≤ 𝑥 ≤ 1 − 𝛼, and 0 < 𝜖 ≤ 1. 

So 𝑁 >
𝑙𝑛𝜖

𝑙𝑛𝛼
  would work for all 0 ≤ 𝑥 ≤ 1 − 𝛼. 

 

 

The pointwise limit of Riemann integrable functions may not be Riemann 

integrable. 

Ex.    Let  𝑓𝑛(𝑥) = 𝑛     if   0 < 𝑥 ≤
1

𝑛
 

                          =
1

𝑥
      if  

1

𝑛
 < 𝑥 ≤ 1. 

 

 

 

{𝑓𝑛} converges pointwise to 𝑓(𝑥) =
1

𝑥
  on 0 < 𝑥 ≤ 1 (which is not 

 Riemann integrable).   

 

Note: The convergence is not uniform.  For example, if 𝜖 = 1 and 

                       0 < 𝑥 <
1

𝑛
;     |𝑓𝑛(𝑥) − 𝑓(𝑥)| = |𝑛 −

1

𝑥
|, which is 

                        unbounded for all 𝑛. 

 

 

 

𝑛 

1/𝑛 

𝑦 = 𝑓𝑛(𝑥) 
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However, we do have: 

Prop.  Let {𝑓𝑗} be a sequence of measurable functions on 𝐸 that converges 

            pointwise a.e. on 𝐸 to a function 𝑓.  Then 𝑓 is measurable. 

 

Proof:  Suppose {𝑓𝑗} converges pointwise to 𝑓 on 𝐸~𝐴, where         

           𝑚(𝐴) = 0, 𝐴 ⊆ 𝐸.  

           From an earlier proposition we know that 𝑓is measurable if, and only if, its 

             restriction to 𝐸~𝐴 is measurable.  

  Thus, by replacing 𝐸 by 𝐸~𝐴, we can assume the sequence converges  

              pointwise on 𝐸. 

   We must show {𝑥 ∈ 𝐸|𝑓(𝑥) < 𝑐} is measurable.  

 

            For a point  𝑥 ∈ 𝐸, since lim
𝑗→∞

𝑓𝑗(𝑥) = 𝑓(𝑥), 

            𝑓(𝑥) < 𝑐 if, and only if, there exist 𝑛,𝑘 ∈ ℤ+ such that: 

     𝑓𝑗(𝑥) < 𝑐 −
1

𝑛
  for all 𝑗 ≥ 𝑘, where 𝑘 depends on 𝑥 and 𝑛.  

 

 

 

 

 
 

 

  But for any 𝑛, 𝑗 ∈ ℤ+, {𝑥 ∈ 𝐸| 𝑓𝑗(𝑥) < 𝑐 −
1

𝑛
} is measurable since   

   𝑓𝑗 is measurable.  

 

𝑐 

𝑐 −
1

𝑛
   

𝑥 

𝑓𝑗(𝑥) 

𝑓(𝑥) 
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  Thus, for any 𝑘, 

          ⋂ {𝑥 ∈ 𝐸|∞
𝑗=𝑘 𝑓𝑗(𝑥) < 𝑐 −

1

𝑛
} =  {𝑥 ∈ 𝐸 |𝑓(𝑥) < 𝑐 −

1

𝑛
}    

              is also measurable.  

 

  Now notice: 

{𝑥 ∈ 𝐸|𝑓(𝑥) < 𝑐} = ⋃ [1≤𝑘,𝑛<∞ ⋂ {𝑥 ∈ 𝐸|∞
𝑗=𝑘 𝑓𝑗(𝑥) < 𝑐 −

1

𝑛
}].  

  So 𝑓(𝑥) is measurable because the RHS is made up of countable unions   

   and intersections of measurable sets. 

 

Def.  If 𝐴 is any set, the characteristic function of 𝐴, 𝜒𝐴, is the function on ℝ 

         defined by: 

𝜒𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 

             = 0 if 𝑥 ∉ 𝐴. 

 𝜒𝐴 is measurable if, and only if, 𝐴 is measurable. Linear combinations of 

           characteristic functions will play a role in Lebesgue integration. 

 

Def.    A real valued function 𝜑 on a measurable set 𝐸 is called simple  

            if it is measurable and takes on only a finite number of values.  

 

 Notice that linear combinations and products of simple functions 

 are simple functions.   

 

 If 𝜑 is a simple function on a domain 𝐸 that takes the values 

 𝑐1, 𝑐2, … , 𝑐𝑛 then we can write 𝜑 as: 

         𝜑(𝑥) = ∑ 𝑐𝑘
𝑛
𝑘=1 𝜒𝐸𝑘

(𝑥); where 𝐸𝑘 = {𝑥 ∈ 𝐸|𝜑(𝑥) = 𝑐𝑘}.  
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This representation of a simple function as a linear combination of characteristic 

functions is called the canonical representation of the simple function 𝜑. 

 

The Simple Approximation Lemma: Let 𝑓 be a measurable real  valued function on 

𝐸. Assume 𝑓 is bounded on 𝐸, i.e. there is an 𝑀 ≥ 0 for which |𝑓(𝑥)| ≤ 𝑀 for 

all 𝑥 ∈ 𝐸. Then for each 𝜖 > 0 there are simple functions 𝜑𝜖 and 𝜓𝜖 defined on 

𝐸 such that: 

𝜑𝜖(𝑥) ≤ 𝑓(𝑥) ≤ 𝜓𝜖(𝑥) and 0 ≤ 𝜓𝜖(𝑥) − 𝜑𝜖(𝑥) < 𝜖 on 𝐸. 

 

Proof:  Let (𝑎, 𝑏) be an open, bounded interval that contains the image      

            of 𝐸, 𝑓(𝐸), and 𝑎 = 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑛−1 < 𝑦𝑛 = 𝑏 where  

   𝑦𝑗 − 𝑦𝑗−1 < 𝜖   for 1 ≤ 𝑗 ≤ 𝑛. 

 

 

 

 

 

 

 

 

 

 

Let 𝐼𝑗 = [𝑦𝑗−1, 𝑦𝑗) and 𝐸𝑗 = 𝑓−1(𝐼𝑗)                                                  

Since 𝑓 is measurable and 𝐼𝑗  is measurable, each 𝐸𝑗 is measurable. 

𝑦0 = 𝑎 

𝑦𝑛 = 𝑏 

𝜑𝜖(𝑥) 
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Define 𝜑𝜖 = ∑ 𝑦𝑗−1
𝑛
𝑗=1 𝜒𝐸𝑗

     and      𝜓𝜖 = ∑ 𝑦𝑗
𝑛
𝑗=1 𝜒𝐸𝑗

. 

Let 𝑥 ∈ 𝐸, since 𝑓(𝐸) ⊆ (𝑎, 𝑏), there is a unique 𝑗, 1 ≤ 𝑗 ≤ 𝑛 for 

which 𝑦𝑗−1 ≤ 𝑓(𝑥) < 𝑦𝑗 and therefore: 

 

𝜑𝜖(𝑥) = 𝑦𝑗−1 ≤ 𝑓(𝑥) < 𝑦𝑗 = 𝜓𝜖(𝑥) 

 

 But 𝑦𝑗 − 𝑦𝑗−1 < 𝜖    so,    0 ≤ 𝜓𝜖(𝑥) − 𝜑𝜖(𝑥) < 𝜖. 

 

 

Ex.  Let   𝑓(𝑥) = 𝑥2   if   −2 < 𝑥 < 2 and 𝑥 ≠ 0 

      = 2     if       𝑥 = 0. 

 Approximate 𝑓(𝑥) by simple functions 𝜑, 𝜓 where: 

𝜑 ≤ 𝑓 ≤ 𝜓 and 0 ≤ 𝜓 − 𝜑 < 1.1 on (−2, 2).  

 

 Notice 0 < 𝑓(𝑥) < 4, so we need a partition of [0, 4] such that each 

            interval has length less than 1.1 

 One way to do this is:   𝑎 = 0 < 1 < 2 < 3 < 4 < 𝑏 

 So  𝐼1 = [0, 1) 

𝐼2 = [1, 2) 

𝐼3 = [2, 3) 

𝐼4 = [3, 4) 

𝜑𝜖 = ∑ 𝑦𝑗−1
4
𝑗=1 𝜒𝐸𝑗

    and    𝜓𝜖 = ∑ 𝑦𝑗
4
𝑘=1 𝜒𝐸𝑗

 

 where 𝐸𝑗 = 𝑓−1(𝐼𝑗)     1 ≤ 𝑗 ≤ 4. 
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 𝐸1 = 𝑓−1(𝐼1) = {𝑥| 0 ≤ 𝑓(𝑥) < 1} = {𝑥| 0 ≤ 𝑥2 < 1, 𝑥 ≠ 0} 

                = (−1, 0) ∪ (0,1)  

 

𝐸2 = 𝑓−1(𝐼2) = {𝑥| 1 ≤ 𝑓(𝑥) < 2} = {𝑥| 1 ≤ 𝑥2 < 2, 𝑥 ≠ 0} 

                                                                           = (−√2, −1] ∪ [1, √2)  

 

𝐸3 = 𝑓−1(𝐼3) = {𝑥| 2 ≤ 𝑓(𝑥) < 3} = {𝑥|  2 ≤ 𝑥2 < 3} ∪ {0} 

 = (−√3, −√2] ∪ [√2, √3) ∪ {0} 
 

𝐸4 = 𝑓−1(𝐼4) = {𝑥| 3 ≤ 𝑓(𝑥) < 4} = (−2, −√3] ∪ [√3, 2).  

So 

 𝜑1.1(𝑥) = 0 ∙ 𝜒𝐸1
+ 1 ∙ 𝜒𝐸2

+ 2 ∙ 𝜒𝐸3
+ 3 ∙ 𝜒𝐸4

= 𝜒𝐸2
+ 2𝜒𝐸3

+ 3𝜒𝐸4
 

           𝜓1.1(𝑥) = 𝜒𝐸1
+ 2𝜒𝐸2

+ 3𝜒𝐸3
+ 4𝜒𝐸4

. 

 

The Simple Approximation Theorem:  An extended real valued function 𝑓 on a 

             measurable set 𝐸 is measurable if, and only if, there is a sequence {𝜑𝑛} of 

            simple functions on 𝐸 which converges pointwise to 𝑓 on 𝐸 and has 

             |𝜑𝑛
(𝑥)| ≤ |𝑓(𝑥)| on 𝐸 for all 𝑛. 

 If 𝑓 is non-negative, we may choose {𝜑𝑛} to be increasing. 

 

Proof:  Since each simple function is measurable, and we know from an earlier  

   proposition that the pointwise limit of measurable functions is   

   measurable, 𝑓 is then measurable. 

   Now assume 𝑓 is measurable and let’s show we can find a sequence of     

            of simple functions that converges pointwise to it on 𝐸.  
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               First let’s assume 𝑓 ≥ 0 on 𝐸. Let 𝐸𝑛 = {𝑥 ∈ 𝐸| 𝑓(𝑥) ≤ 𝑛}.  

            

                                              Then 𝐸𝑛 is measurable and the restriction of 𝑓 to 𝐸𝑛 is a non-negative 

              bounded measurable function. By the previous lemma applied to 𝐸𝑛 and 

                with 𝜖 =
1

𝑛
  we can find simple functions 𝜑𝜖 , 𝜓𝜖:   

                    0 ≤ 𝜑𝑛 ≤ 𝑓 ≤ 𝜓𝑛 on 𝐸𝑛    and    0 ≤ 𝜓𝑛 − 𝜑𝑛 <
1

𝑛
  on 𝐸𝑛.  

    Also: 

                    0 ≤ 𝜑𝑛 ≤ 𝑓    and    0 ≤ 𝑓 − 𝜑𝑛 ≤ 𝜓𝑛 − 𝜑𝑛 <    on 𝐸𝑛.  

 

    We can extend 𝜑𝑛 to all of 𝐸 by setting 𝜑𝑛(𝑥) = 𝑛 if 𝑓(𝑥) > 𝑛.    

    Now 0 ≤ 𝜑𝑛 ≤ 𝑓 on all of 𝐸.  

 

    Now let’s show lim
𝑛→∞

𝜑𝑛 (𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝐸.  

 

 

    Case 1: Assume 𝑓(𝑥) is finite. 

            Choose 𝑁 ∈ ℤ+ such that 𝑓(𝑥) < 𝑁. 

 Then, 0 ≤ 𝑓(𝑥) − 𝜑𝑛(𝑥) <
1

𝑛
    for 𝑛 ≥ 𝑁.  

           Since if 𝑛 ≥ 𝑁 and 𝑓(𝑥) < 𝑁, then 𝐸𝑛 = 𝐸.  

           Thus, lim
𝑛→∞

𝜑𝑛(𝑥) = 𝑓(𝑥).  
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Case 2: 𝑓(𝑥) = ∞.  

          Then 𝜑𝑛(𝑥) = 𝑛 for all 𝑛, so lim
𝑛→∞

𝜑𝑛(𝑥) = 𝑓(𝑥). 

 

By replacing each 𝜑𝑛 with max {𝜑1(𝑥), … , 𝜑𝑛(𝑥)} we get {𝜑𝑛} increasing. 

 

The general case follows by expressing 𝑓 by: 

𝑓(𝑥) = 𝑓+(𝑥) − 𝑓−(𝑥) 

where 𝑓+(𝑥) and 𝑓−(𝑥) are both non-negative functions. 


