We will assume all functions have domains that are a subset of $\mathbb R$ and take values in ℝU {±∞}.

Prop. Let f have a measurable domain E . Then the following statements are equivalent.

- 1. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) > c\}$ is measurable.
- 2. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) \geq c\}$ is measurable.
- 3. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) < c\}$ is measurable.
- 4. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) \leq c\}$ is measurable.

Each of these properties implies that for each extended real number c , the set ${x \in E | f(x) = c}$ is measurable.

Proof: Sets 1 and 4 , and 2 and 3, are complements . Since complements of measurable sets are measurable 1 and 4 are equivalent and 2 and 3 are equivalent.

1⇒2.

$$
\{x \in E | f(x) \ge c\} = \bigcap_{n=1}^{\infty} \left\{x \in E \middle| f(x) > c - \frac{1}{n}\right\}.
$$

By 1, each set $\Big\{x\in E\Big|f(x)>c-\frac{1}{x}\Big\}$ $\frac{1}{n}$ is measurable.

The countable intersection of measurable sets is measurable hence ${x \in E | f(x) \ge c}$ is measurable.

2⇒1.

$$
\{x \in E | f(x) > c\} = \bigcup_{n=1}^{\infty} \left\{ x \in E \middle| f(x) \geq c + \frac{1}{n} \right\}.
$$

By 2, each $\{x \in E \big| f(x) \geq c + \frac{1}{x}\}$ $\frac{1}{n}$ is measurable hence so is ${x \in E | f(x) > c}.$

Thus statements 1-4 are equivalent.

Notice that if $c \in \mathbb{R}$ then

$$
\{x \in E | f(x) = c\} = \{x \in E | f(x) \ge c\} \cap \{x \in E | f(x) \le c\},\
$$

thus $\{x \in E | f(x) = c\}$ is measurable because it's the intersection of two measurable sets.

Notice that if $c = \infty$ then:

$$
\{x \in E | f(x) = \infty\} = \bigcap_{n=1}^{\infty} \{x \in E | f(x) > n\}.
$$

Thus $\{x \in E | f(x) = \infty\}$ is the countable intersection of measurable sets and hence measurable.

Def. An extended real valued function defined on E is said to be Lebesgue **measurable** (or just measurable), provided its domain E is measurable and it satisfies one (and hence all) of the four statements in the previous proposition.

Prop. Let $f: E \to \mathbb{R} \cup \{\pm \infty\}$, where E is measurable. Then f is measurable if and only if for each open set O , the inverse image of O , $f^{-1}(O) = \{x \in E \vert f(x) \in O\}$, is a measurable set.

Proof: \implies If $f^{-1}(O)$ is measurable for every open set O , then $f^{-1}(c, \infty) = \{x | f(x) > c\}$ is measurable and hence f is measurable.

 \Leftarrow If f is measurable and O is any open set, then we can express O as the countable union of bounded, open intervals $\{I_n\}_{n=1}^\infty$, where

each I_n can be expressed as $B_n \cap A_n$, $B_n = (-\infty, b_n)$, $A_n = (a_n, \infty)$.

Since f is measurable so are $f^{-1}(B_n)$ and $f^{-1}(A_n).$

$$
f^{-1}(0) = f^{-1}(\bigcup_{n=1}^{\infty} (B_n \cap A_n))
$$

=
$$
\bigcup_{n=1}^{\infty} (f^{-1}(B_n) \cap f^{-1}(A_n)).
$$

Since measurable sets form a σ -algebra, $f^{-1}(O)$ is measurable.

Prop. If $f: E \to \mathbb{R}$, where f is continuous and E is measurable, then f is measurable.

Proof: Since f is continuous, given any open set O in \mathbb{R} ,

 $f^{-1}(O) = E \cap U$, where U is open in $\mathbb{R}.$

Thus $f^{-1}(O)$ is measurable because E and U are.

Hence f is measurable by the previous proposition.

Def. A function that is either increasing on E or decreasing on E is called **monotonic**.

Prop. A monotonic function that is defined on an interval is measurable. (HW problem).

Prop. Let f be an extended real valued function on a measurable set E .

- 1. If f is measurable on E and $f(x) = g(x)$ almost everywhere (a.e.), then q is measurable on E .
- 2. For a measurable subset $B \subseteq E$, f is measurable on E if and only if the restriction of f to B and $E \sim B$ are measurable.

Proof: 1. Assume f is measurable.

$$
\text{Let } F = \{x \in E \mid f(x) \neq g(x)\}.
$$

Notice that:

 ${x \in E | g(x) > c} = {x \in F | g(x) > c} \cup ({x \in E | f(x) > c} \cap (E \sim F)).$

Since $f = g$ a.e., $m(F) = 0$ and hence $m\{x \in F | g(x) > c\} = 0$.

Thus F and $\{x \in F | g(x) > c\}$ are measurable.

Since f is measurable, $\{x \in E \mid f(x) > c\}$ is measurable.

 $E \sim F$ is measurable because E and F are.

Thus $\{x \in E | g(x) > c\}$ is measurable, and so is $g(x)$.

2. First let's show that if the restriction of f to B and $E \sim B$ are measurable then f is measurable on E .

Notice that:

$$
\{x \in E \mid f(x) > c\} = \{x \in B \mid f(x) > c\} \cup \{x \in (E \sim B) \mid f(x) > c\}.
$$

Each set on the RHS is measurable so f is measurable.

Now let's show that if f is measurable on E then the restriction of f to B and $E \sim B$ are measurable.

$$
\{x \in B \mid f(x) > c\} = \{x \in E \mid f(x) > c\} \cap B
$$
\n
$$
\{x \in (E \sim B) \mid f(x) > c\} = \{x \in E \mid f(x) > c\} \cap (E \sim B)
$$

In each case the RHS is measurable so the restriction of f to B and $E \sim B$ are measurable.

Thus f is measurable if and only if the restrictions of f to B and $E \sim B$ are.

Theorem: Let f and g be measurable function on E that are finite a.e. on E .

- 1. For any $a, b \in \mathbb{R}$, $af + bg$ is measurable on E .
- 2. fg is measurable on E .

Note: We need f, g to be finite a.e. because at points where $f(x) = \infty$ and $g(x) = -\infty$, for example, $f + g$ is not well defined.

Proof: If $a = 0$, then $af = 0$ where f is finite (i.e. a.e.), hence af is measurable. If $a \neq 0$ then:

 ${x \in E | af(x) > c} = {x \in E | f(x) > \frac{c}{a}}$ $\frac{c}{a}$ }; if $a > 0$ ${x \in E | af(x) > c} = {x \in E | f(x) < \frac{c}{a}}$ $\frac{c}{a}$ }; if $a < 0$. Thus f measurable implies that af is measurable.

Now we just need to show $f + g$ is measurable.

For each $x \in E$, if $f(x) + g(x) < c$, then $f(x) < c - g(x)$.

Since $\mathbb Q$ is dense in $\mathbb R$, there is a rational number, q, for which

$$
f(x) < q < c - g(x) \quad \text{or} \quad f(x) < q \quad \text{and} \quad g(x) < c - q.
$$

Hence:

$$
\{x \in E \mid f(x) + g(x) < c\} = \bigcup_{q \in \mathbb{Q}} [x \in E \mid g(x) < c - q\} \cap \{x \in E \mid f(x) < q\}].
$$

 ${x \in E | f(x) + g(x) < c}$ is measurable because it's a countable union of measurable sets.

Hence $f + g$ is measurable.

2 To prove fg is measurable, note that:

$$
fg = \frac{1}{2}[(f+g)^2 - f^2 - g^2].
$$

So we just need to show f^2 is measurable when f is measurable.

For
$$
c \ge 0
$$
:
\n $\{x \in E | f^2(x) > c\} = \{x \in E | f(x) > \sqrt{c}\} \cup \{x \in E | f(x) < -\sqrt{c}\}.$

Both sets on the RHS are measurable so the LHS is.

For
$$
c < 0
$$
:
\n $\{x \in E | f^2(x) > c\} = E$; where *E* is measurable.

Thus f^2 is measurable.

Note: Although continuity and differentiability are preserved under the composition of functions, measurability is not. That is, there exist measurable functions f, g such that $f(g(x))$ is not measurable. However:

Prop. Let g be a measurable real valued function defined on E and f a continuous real valued function defined on all of ℝ. Then the composition $f(g(x))$ is a measurable function on E.

Proof: We show that given any open set O ,

 $(f \circ g)^{-1}(O) = g^{-1}(f^{-1}(O))$ is measurable.

Since f is continuous, $f^{-1}(0)$ is open.

Since g is measurable, g^{-1} of an open set is measurable.

Hence $(f \circ g)^{-1}(O) = g^{-1}(f^{-1}(O))$ is measurable.

As a consequence of the previous proposition if f is measurable on E then so are $|f|$ and $|f|^p$ for $p > 0$.

Prop. For a finite family $\{f_k\}_{k=1}^n$ of measurable functions on E , $\max\{f_1(x),f_2(x),...,f_n(x)\}$ and $\min\{f_1(x),f_2(x),...,f_n(x)\}$ are measurable.

Proof: For any c :

 $\{x \in E | \max\{f_1(x), f_2(x), ..., f_n(x)\} > c\} = \bigcup_{k=1}^n \{x \in E | f_k(x) > c\}$ $k=1$ $\{x \in E | \min\{f_1(x), f_2(x), ..., f_n(x)\} < c\} = \bigcup_{k=1}^n \{x \in E | f_k(x) < c\}.$ $k=1$ In each case the RHS is the finite union of measurable sets, hence $\max\{f_1(x), f_2(x),..., f_n(x)\}$ and $\min\{f_1(x), f_2(x),..., f_n(x)\}$ are measurable.

When we discuss Lebesgue integration it will be useful to work with the functions:

 $f^+(x) = \max \{f(x), 0\} \ge 0$ $f^-(x) = \max\{-f(x), 0\} \ge 0$ So if f is measurable on E then so are f^+ and $f^-.$ Also $f = f^+ - f^-$ on E .

Ex. Let $f: D \to \mathbb{R}$, where D is measurable. Show f is measurable if and only if ${x \in D | f(x) > \alpha}$ is measurable for each rational number α .

 \Rightarrow If f is measurable then $\{x \in D | f(x) > c\}$ is measurable for any real number c , thus it's measurable for any rational number α .

 \Leftarrow Assume $\{x \in D | f(x) > \alpha\}$ is measurable for each $\alpha \in \mathbb{Q}$. Given any $c \in \mathbb{R}$, we can find a decreasing sequence $\{\alpha_k\} \to c$; $\alpha_k \in \mathbb{Q}$. $\{x \in D | f(x) > c\} = \bigcup_{k=1}^{\infty} \{x \in D | f(x) > \alpha_k\}$ $_{k=1}^{\infty}$ { $x \in D | f(x) > \alpha_k$ }; So the LHS is measurable because it's the countable union of measurable sets.

Ex. Show that if f , $g: D \to \mathbb{R}$, D a measurable set and f , g measurable functions then $\{x \in D \mid f(x) > g(x)\}$ is measurable.

Since f , g are measurable functions, so is $f - g$. Let $h(x) = f(x) - g(x)$. ${x \in D | f(x) > g(x)} = {x \in D | h(x) > 0}.$

But h is measurable so $\{x \in D \mid f(x) > g(x)\}$ is measurable.