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                                 Lebesgue Measurable Functions 

 

     We will assume all functions have domains that are a subset of ℝ and take 

values in ℝ∪ {±∞}. 

 

Prop.  Let 𝑓 have a measurable domain 𝐸.  Then the following statements are 

equivalent. 

1. For each 𝑐 ∈ ℝ, the set {𝑥 ∈ 𝐸|𝑓(𝑥) > 𝑐} is measurable. 

2. For each 𝑐 ∈ ℝ, the set {𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑐} is measurable. 

3. For each 𝑐 ∈ ℝ, the set {𝑥 ∈ 𝐸|𝑓(𝑥) < 𝑐} is measurable. 

4. For each 𝑐 ∈ ℝ, the set {𝑥 ∈ 𝐸|𝑓(𝑥) ≤ 𝑐} is measurable. 

Each of these properties implies that for each extended real number 𝑐, the set 

{𝑥 ∈ 𝐸|𝑓(𝑥) = 𝑐} is measurable. 

 

Proof:  Sets 1 and 4 , and 2 and 3, are complements .  Since complements of 

measurable sets are measurable 1 and 4 are equivalent and 2 and 3 are 

equivalent. 

1⇒2. 

{𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑐} = ⋂ {𝑥 ∈ 𝐸|𝑓(𝑥) > 𝑐 −
1

𝑛
}∞

𝑛=1  .  

 

By 1, each set {𝑥 ∈ 𝐸|𝑓(𝑥) > 𝑐 −
1

𝑛
} is measurable.  

 

The countable intersection of measurable sets is measurable hence 

{𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑐} is measurable. 
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 2⇒1. 

{𝑥 ∈ 𝐸|𝑓(𝑥) > 𝑐} = ⋃ {𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑐 +
1

𝑛
}∞

𝑛=1 .  

 

By 2, each  {𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑐 +
1

𝑛
} is measurable hence so is 

{𝑥 ∈ 𝐸|𝑓(𝑥) > 𝑐}.  

 

Thus statements 1-4 are equivalent. 

 

Notice that if 𝑐 ∈ ℝ then 

{𝑥 ∈ 𝐸|𝑓(𝑥) = 𝑐} = {𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑐} ∩ {𝑥 ∈ 𝐸|𝑓(𝑥) ≤ 𝑐}, 

thus {𝑥 ∈ 𝐸|𝑓(𝑥) = 𝑐} is measurable because it’s the intersection of two 

measurable sets.  

 

Notice that if 𝑐 = ∞ then: 

{𝑥 ∈ 𝐸|𝑓(𝑥) = ∞} = ⋂ {𝑥 ∈ 𝐸|𝑓(𝑥) > 𝑛}∞
𝑛=1 . 

Thus  {𝑥 ∈ 𝐸|𝑓(𝑥) = ∞} is the countable intersection of measurable sets and 

hence measurable. 

 

Def.  An extended real valued function defined on 𝐸 is said to be Lebesgue 

measurable (or just measurable), provided its domain 𝐸 is measurable and it 

satisfies one (and hence all) of the four statements in the previous proposition. 

 

Prop. Let 𝑓: 𝐸 → ℝ ∪ {±∞}, where 𝐸 is measurable.  Then 𝑓 is measurable if 

and only if for each open set 𝑂, the inverse image of 𝑂,                                 

𝑓−1(𝑂) = {𝑥 ∈ 𝐸| 𝑓(𝑥) ∈ 𝑂}, is a measurable set. 
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Proof:  ⟹ If 𝑓−1(𝑂) is measurable for every open set 𝑂, then         

𝑓−1(𝑐, ∞) = {𝑥|𝑓(𝑥) > 𝑐} is measurable and hence 𝑓 is measurable.   

 

 

⟸  If 𝑓 is measurable and 𝑂 is any open set, then we can express 𝑂 as the 

countable union of bounded, open intervals {𝐼𝑛}𝑛=1
∞ , where 

each 𝐼𝑛 can be expressed as 𝐵𝑛 ∩ 𝐴𝑛,  𝐵𝑛 = (−∞, 𝑏𝑛),  𝐴𝑛 = (𝑎𝑛, ∞).  

 

Since 𝑓 is measurable so are 𝑓−1(𝐵𝑛) and 𝑓−1(𝐴𝑛).  

 

𝑓−1(𝑂) = 𝑓−1(⋃ (∞
𝑛=1 𝐵𝑛 ∩ 𝐴𝑛))  

                = ⋃ (𝑓−1(𝐵𝑛) ∩ 𝑓−1(𝐴𝑛)∞
𝑛=1 ).   

 

Since measurable sets form a 𝜎-algebra, 𝑓−1(𝑂) is measurable. 

 

Prop.  If 𝑓: 𝐸 → ℝ, where 𝑓 is continuous and 𝐸 is measurable, then 𝑓 is 

measurable. 

 

Proof: Since 𝑓 is continuous, given any open set 𝑂 in ℝ, 

 𝑓−1(𝑂) = 𝐸 ∩ 𝑈, where 𝑈 is open in ℝ.  

 

Thus 𝑓−1(𝑂) is measurable because 𝐸 and 𝑈 are.    

 

Hence 𝑓 is measurable by the previous proposition. 

 

Def.  A function that is either increasing on 𝐸 or decreasing on 𝐸 is called 

monotonic. 
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Prop.  A monotonic function that is defined on an interval is measurable. 

           (HW problem).  

 

Prop.  Let 𝑓 be an extended real valued function on a measurable set 𝐸. 

1. If 𝑓 is measurable on 𝐸 and 𝑓(𝑥) = 𝑔(𝑥) almost everywhere (a.e.), then 

𝑔 is measurable on 𝐸. 

2. For a measurable subset 𝐵 ⊆ 𝐸, 𝑓 is measurable on 𝐸 if and only if the 

restriction of 𝑓 to 𝐵 and 𝐸~𝐵 are measurable. 

 

Proof:  1. Assume 𝑓 is measurable. 

          Let 𝐹 = {𝑥 ∈ 𝐸| 𝑓(𝑥) ≠ 𝑔(𝑥)}.   

Notice that:   

{𝑥 ∈ 𝐸|𝑔(𝑥) > 𝑐} = {𝑥 ∈ 𝐹| 𝑔(𝑥) > 𝑐} ∪ ({𝑥 ∈ 𝐸| 𝑓(𝑥) > 𝑐} ∩ (𝐸~𝐹)).                                                                                                             
 

Since 𝑓 = 𝑔 a.e.,  𝑚(𝐹) = 0 and hence  𝑚{𝑥 ∈ 𝐹| 𝑔(𝑥) > 𝑐} = 0.  

 

Thus 𝐹 and  {𝑥 ∈ 𝐹| 𝑔(𝑥) > 𝑐} are measurable.   

 

Since 𝑓 is measurable, {𝑥 ∈ 𝐸| 𝑓(𝑥) > 𝑐} is measurable.  

 

𝐸~𝐹 is measurable because 𝐸 and 𝐹 are.  

 

Thus {𝑥 ∈ 𝐸|𝑔(𝑥) > 𝑐} is measurable, and so is 𝑔(𝑥). 
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2.  First let’s show that if the restriction of 𝑓 to 𝐵 and 𝐸~𝐵 are measurable then 

𝑓 is measurable on 𝐸. 

 Notice that: 

      {𝑥 ∈ 𝐸| 𝑓(𝑥) > 𝑐} = {𝑥 ∈ 𝐵| 𝑓(𝑥) > 𝑐} ∪ {𝑥 ∈ (𝐸~𝐵)| 𝑓(𝑥) > 𝑐}. 

Each set on the RHS is measurable so 𝑓 is measurable.  

 

Now let’s show that if 𝑓 is measurable on 𝐸 then the restriction of 𝑓 to 𝐵 and 

𝐸~𝐵 are measurable. 

                {𝑥 ∈ 𝐵| 𝑓(𝑥) > 𝑐} = {𝑥 ∈ 𝐸| 𝑓(𝑥) > 𝑐} ∩ 𝐵  

      {𝑥 ∈ (𝐸~𝐵)| 𝑓(𝑥) > 𝑐} = {𝑥 ∈ 𝐸| 𝑓(𝑥) > 𝑐} ∩ (𝐸~𝐵)  

In each case the RHS is measurable so the restriction of 𝑓 to 𝐵 and 𝐸~𝐵 are 

measurable.  

 

Thus 𝑓 is measurable if and only if the restrictions of 𝑓 to 𝐵 and 𝐸~𝐵 are. 

 

Theorem:  Let 𝑓 and 𝑔 be measurable function on 𝐸 that are finite a.e. on 𝐸. 

1. For any 𝑎, 𝑏 ∈ ℝ,  𝑎𝑓 + 𝑏𝑔 is measurable on 𝐸. 

2. 𝑓𝑔 is measurable on 𝐸. 

Note:  We need 𝑓, 𝑔 to be finite a.e. because at points where 𝑓(𝑥) = ∞ and 

𝑔(𝑥) = −∞, for example, 𝑓 + 𝑔 is not well defined.  

 

Proof:  If 𝑎 = 0, then 𝑎𝑓 = 0 where 𝑓 is finite (i.e. a.e.), hence 𝑎𝑓 is 

measurable.  If 𝑎 ≠ 0 then: 

{𝑥 ∈ 𝐸| 𝑎𝑓(𝑥) > 𝑐} = {𝑥 ∈ 𝐸| 𝑓(𝑥) >
𝑐

𝑎
} ;    if 𝑎 > 0 

{𝑥 ∈ 𝐸| 𝑎𝑓(𝑥) > 𝑐} = {𝑥 ∈ 𝐸| 𝑓(𝑥) <
𝑐

𝑎
} ;    if 𝑎 < 0.                                        

Thus 𝑓 measurable implies that 𝑎𝑓 is measurable. 



6 
 

 

Now we just need to show 𝑓 + 𝑔 is measurable.  

 

For each 𝑥 ∈ 𝐸, if 𝑓(𝑥) + 𝑔(𝑥) < 𝑐,  then   𝑓(𝑥) < 𝑐 − 𝑔(𝑥). 

Since ℚ is dense in ℝ, there is a rational number, 𝑞, for which  

        𝑓(𝑥) < 𝑞 < 𝑐 − 𝑔(𝑥)   or  𝑓(𝑥) < 𝑞  and  𝑔(𝑥) < 𝑐 − 𝑞.  

 

Hence:  

{𝑥 ∈ 𝐸| 𝑓(𝑥) + 𝑔(𝑥) < 𝑐}                                                                                          

                                 = ⋃ [𝑥 ∈ 𝐸|𝑔(𝑥) < 𝑐 − 𝑞} ∩ {𝑥 ∈ 𝐸| 𝑓(𝑥) < 𝑞}𝑞∈ℚ ].  

 

 {𝑥 ∈ 𝐸| 𝑓(𝑥) + 𝑔(𝑥) < 𝑐} is measurable because it’s a countable union of 

measurable sets. 

Hence 𝑓 + 𝑔 is measurable. 

 

2   To prove 𝑓𝑔 is measurable, note that: 

                   𝑓𝑔 =
1

2
[(𝑓 + 𝑔)2 − 𝑓2 − 𝑔2]. 

So we just need to show 𝑓2 is measurable when 𝑓 is measurable.   

 

For  𝑐 ≥ 0 : 

{𝑥 ∈ 𝐸|𝑓2(𝑥) > 𝑐} = {𝑥 ∈ 𝐸|𝑓(𝑥) > √𝑐} ∪ {𝑥 ∈ 𝐸|𝑓(𝑥) < −√𝑐}.   

Both sets on the RHS are measurable so the LHS is.   

 

For 𝑐 < 0: 

{𝑥 ∈ 𝐸|𝑓2(𝑥) > 𝑐} = 𝐸;  where 𝐸 is measurable.  
 

Thus 𝑓2is measurable. 



7 
 

 

Note: Although continuity and differentiability are preserved under the 

composition of functions, measurability is not.  That is, there exist measurable 

functions 𝑓, 𝑔 such that 𝑓(𝑔(𝑥)) is not measurable. However:  

 

Prop.  Let 𝑔 be a measurable real valued function defined on 𝐸 and 𝑓 a 

continuous real valued function defined on all of ℝ.  Then the composition 

𝑓(𝑔(𝑥)) is a measurable function on 𝐸.   

 

Proof: We show that given any open set 𝑂, 

     (𝑓 ∘ 𝑔)−1(𝑂) = 𝑔−1(𝑓−1(𝑂)) is measurable. 

Since 𝑓 is continuous, 𝑓−1(𝑂) is open. 

Since 𝑔 is measurable, 𝑔−1 of an open set is measurable. 

Hence (𝑓 ∘ 𝑔)−1(𝑂) = 𝑔−1(𝑓−1(𝑂)) is measurable.  

 

As a consequence of the previous proposition if 𝑓 is measurable on 𝐸 then so are 

|𝑓| and |𝑓|𝑝 for 𝑝 > 0.   

 

Prop.  For a finite family {𝑓𝑘}𝑘=1
𝑛  of measurable functions on 𝐸,   

max{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)} and min{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)} are measurable.  

 

Proof: For any 𝑐: 

{𝑥 ∈ 𝐸|max{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)} > 𝑐} = ⋃ {𝑥 ∈ 𝐸|𝑓𝑘(𝑥) > 𝑐}𝑛
𝑘=1   

{𝑥 ∈ 𝐸|min{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)} < 𝑐} = ⋃ {𝑥 ∈ 𝐸|𝑓𝑘(𝑥) < 𝑐}.𝑛
𝑘=1   

In each case the RHS is the finite union of measurable sets, hence 

max{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)} and min{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)} are 

measurable. 
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When we discuss Lebesgue integration it will be useful to work with the functions: 

𝑓+(𝑥) = max {𝑓(𝑥), 0} ≥ 0  

𝑓−(𝑥) = max {−𝑓(𝑥), 0} ≥ 0  

So if 𝑓 is measurable on 𝐸 then so are 𝑓+ and 𝑓−. 

Also 𝑓 = 𝑓+ − 𝑓− on 𝐸. 

 

Ex.  Let 𝑓: 𝐷 → ℝ, where 𝐷 is measurable.  Show 𝑓 is measurable if and only if 

{𝑥 ∈ 𝐷|𝑓(𝑥) > 𝛼} is measurable for each rational number 𝛼.  

 

⟹ If 𝑓 is measurable then {𝑥 ∈ 𝐷|𝑓(𝑥) > 𝑐} is measurable for any real 

number 𝑐, thus it’s measurable for any rational number 𝛼.  

 

⟸ Assume {𝑥 ∈ 𝐷|𝑓(𝑥) > 𝛼} is measurable for each 𝛼 ∈ ℚ. 

Given any 𝑐 ∈ ℝ, we can find a decreasing sequence {𝛼𝑘} → 𝑐; 𝛼𝑘 ∈ ℚ. 

{𝑥 ∈ 𝐷|𝑓(𝑥) > 𝑐} = ⋃ {𝑥 ∈ 𝐷|𝑓(𝑥) > 𝛼𝑘}∞
𝑘=1  ;                                                        

So the LHS is measurable because it’s the countable union of measurable sets.   

 

Ex.  Show that if 𝑓, 𝑔: 𝐷 → ℝ,  𝐷 a measurable set and 𝑓, 𝑔 measurable 

functions then {𝑥 ∈ 𝐷| 𝑓(𝑥) > 𝑔(𝑥)} is measurable. 

 

Since 𝑓, 𝑔 are measurable functions, so is 𝑓 − 𝑔. 

Let ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥). 

{𝑥 ∈ 𝐷| 𝑓(𝑥) > 𝑔(𝑥)} = {𝑥 ∈ 𝐷| ℎ(𝑥) > 0}. 

But ℎ is measurable so {𝑥 ∈ 𝐷| 𝑓(𝑥) > 𝑔(𝑥)} is measurable. 


