We will assume all functions have domains that are a subset of \mathbb{R} and take values in $\mathbb{R} \cup \{\pm \infty\}$.

Prop. Let f have a measurable domain E. Then the following statements are equivalent.

- 1. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) > c\}$ is measurable.
- 2. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) \ge c\}$ is measurable.
- 3. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) < c\}$ is measurable.
- 4. For each $c \in \mathbb{R}$, the set $\{x \in E | f(x) \le c\}$ is measurable.

Each of these properties implies that for each extended real number c, the set $\{x \in E | f(x) = c\}$ is measurable.

Proof: Sets 1 and 4 , and 2 and 3, are complements . Since complements of measurable sets are measurable 1 and 4 are equivalent and 2 and 3 are equivalent.

1⇒2.

$$\{x \in E | f(x) \ge c\} = \bigcap_{n=1}^{\infty} \left\{ x \in E \left| f(x) > c - \frac{1}{n} \right\}.$$

By 1, each set $\left\{ x \in E \left| f(x) > c - \frac{1}{n} \right\}$ is measurable.

The countable intersection of measurable sets is measurable hence $\{x \in E | f(x) \ge c\}$ is measurable.

2⇒1.
{
$$x \in E | f(x) > c$$
} = $\bigcup_{n=1}^{\infty} \left\{ x \in E \left| f(x) \ge c + \frac{1}{n} \right\}$.

By 2, each $\left\{x \in E \left| f(x) \ge c + \frac{1}{n}\right\}$ is measurable hence so is $\{x \in E \mid f(x) > c\}.$

Thus statements 1-4 are equivalent.

Notice that if $c \in \mathbb{R}$ then

$$\{x \in E | f(x) = c\} = \{x \in E | f(x) \ge c\} \cap \{x \in E | f(x) \le c\},\$$

thus $\{x \in E | f(x) = c\}$ is measurable because it's the intersection of two measurable sets.

Notice that if $c = \infty$ then:

$$\{x \in E | f(x) = \infty\} = \bigcap_{n=1}^{\infty} \{x \in E | f(x) > n\}.$$

Thus $\{x \in E | f(x) = \infty\}$ is the countable intersection of measurable sets and hence measurable.

Def. An extended real valued function defined on E is said to be **Lebesgue measurable** (or just measurable), provided its domain E is measurable and it satisfies one (and hence all) of the four statements in the previous proposition.

Prop. Let $f: E \to \mathbb{R} \cup \{\pm \infty\}$, where E is measurable. Then f is measurable if and only if for each open set O, the inverse image of O, $f^{-1}(O) = \{x \in E \mid f(x) \in O\}$, is a measurable set.

Proof: \Rightarrow If $f^{-1}(0)$ is measurable for every open set 0, then $f^{-1}(c, \infty) = \{x | f(x) > c\}$ is measurable and hence f is measurable.

 \leftarrow If f is measurable and O is any open set, then we can express O as the countable union of bounded, open intervals $\{I_n\}_{n=1}^{\infty}$, where

each I_n can be expressed as $B_n \cap A_n$, $B_n = (-\infty, b_n)$, $A_n = (a_n, \infty)$.

Since f is measurable so are $f^{-1}(B_n)$ and $f^{-1}(A_n)$.

$$f^{-1}(0) = f^{-1}(\bigcup_{n=1}^{\infty} (B_n \cap A_n))$$

= $\bigcup_{n=1}^{\infty} (f^{-1}(B_n) \cap f^{-1}(A_n)).$

Since measurable sets form a σ -algebra, $f^{-1}(0)$ is measurable.

Prop. If $f: E \to \mathbb{R}$, where f is continuous and E is measurable, then f is measurable.

Proof: Since f is continuous, given any open set O in \mathbb{R} ,

 $f^{-1}(0) = E \cap U$, where U is open in \mathbb{R} .

Thus $f^{-1}(0)$ is measurable because E and U are.

Hence f is measurable by the previous proposition.

Def. A function that is either increasing on E or decreasing on E is called **monotonic**.

Prop. A monotonic function that is defined on an interval is measurable. (HW problem).

Prop. Let f be an extended real valued function on a measurable set E.

- 1. If f is measurable on E and f(x) = g(x) almost everywhere (a.e.), then g is measurable on E.
- 2. For a measurable subset $B \subseteq E$, f is measurable on E if and only if the restriction of f to B and $E \sim B$ are measurable.

Proof: 1. Assume f is measurable.

Let $F = \{x \in E \mid f(x) \neq g(x)\}.$

Notice that:

 $\{x \in E | g(x) > c\} = \{x \in F | g(x) > c\} \cup (\{x \in E | f(x) > c\} \cap (E \sim F)).$

Since f = g a.e., m(F) = 0 and hence $m\{x \in F | g(x) > c\} = 0$.

Thus *F* and $\{x \in F | g(x) > c\}$ are measurable.

Since f is measurable, $\{x \in E | f(x) > c\}$ is measurable.

 $E \sim F$ is measurable because E and F are.

Thus $\{x \in E | g(x) > c\}$ is measurable, and so is g(x).

2. First let's show that if the restriction of f to B and $E \sim B$ are measurable then f is measurable on E.

Notice that:

$$\{x \in E \mid f(x) > c\} = \{x \in B \mid f(x) > c\} \cup \{x \in (E \sim B) \mid f(x) > c\}.$$

Each set on the RHS is measurable so f is measurable.

Now let's show that if f is measurable on E then the restriction of f to B and $E \sim B$ are measurable.

$$\{x \in B \mid f(x) > c\} = \{x \in E \mid f(x) > c\} \cap B$$
$$\{x \in (E \sim B) \mid f(x) > c\} = \{x \in E \mid f(x) > c\} \cap (E \sim B)$$

In each case the RHS is measurable so the restriction of f to B and $E \sim B$ are measurable.

Thus f is measurable if and only if the restrictions of f to B and $E \sim B$ are.

Theorem: Let f and g be measurable function on E that are finite a.e. on E.

- 1. For any $a, b \in \mathbb{R}$, af + bg is measurable on E.
- 2. fg is measurable on E.

Note: We need f, g to be finite a.e. because at points where $f(x) = \infty$ and $g(x) = -\infty$, for example, f + g is not well defined.

Proof: If a = 0, then af = 0 where f is finite (i.e. a.e.), hence af is measurable. If $a \neq 0$ then:

$$\{x \in E \mid af(x) > c\} = \{x \in E \mid f(x) > \frac{c}{a}\}; \text{ if } a > 0$$
$$\{x \in E \mid af(x) > c\} = \{x \in E \mid f(x) < \frac{c}{a}\}; \text{ if } a < 0.$$
Thus *f* measurable implies that *af* is measurable.

Now we just need to show f + g is measurable.

For each $x \in E$, if f(x) + g(x) < c, then f(x) < c - g(x).

Since \mathbb{Q} is dense in \mathbb{R} , there is a rational number, q, for which

$$f(x) < q < c - g(x)$$
 or $f(x) < q$ and $g(x) < c - q$

Hence:

$$\{ x \in E \mid f(x) + g(x) < c \}$$

= $\bigcup_{q \in \mathbb{Q}} [x \in E \mid g(x) < c - q \} \cap \{ x \in E \mid f(x) < q \}].$

 $\{x \in E \mid f(x) + g(x) < c\}$ is measurable because it's a countable union of measurable sets.

Hence f + g is measurable.

2 To prove fg is measurable, note that:

$$fg = \frac{1}{2}[(f+g)^2 - f^2 - g^2].$$

So we just need to show f^2 is measurable when f is measurable.

For $c \ge 0$: $\{x \in E | f^2(x) > c\} = \{x \in E | f(x) > \sqrt{c}\} \cup \{x \in E | f(x) < -\sqrt{c}\}.$

Both sets on the RHS are measurable so the LHS is.

For c < 0: $\{x \in E | f^2(x) > c\} = E$; where *E* is measurable.

Thus f^2 is measurable.

Note: Although continuity and differentiability are preserved under the composition of functions, measurability is not. That is, there exist measurable functions f, g such that f(g(x)) is not measurable. However:

Prop. Let g be a measurable real valued function defined on E and f a continuous real valued function defined on all of \mathbb{R} . Then the composition f(g(x)) is a measurable function on E.

Proof: We show that given any open set O,

 $(f \circ g)^{-1}(0) = g^{-1}(f^{-1}(0))$ is measurable.

Since f is continuous, $f^{-1}(0)$ is open.

Since g is measurable, g^{-1} of an open set is measurable.

Hence $(f \circ g)^{-1}(0) = g^{-1}(f^{-1}(0))$ is measurable.

As a consequence of the previous proposition if f is measurable on E then so are |f| and $|f|^p$ for p > 0.

Prop. For a finite family $\{f_k\}_{k=1}^n$ of measurable functions on E, max $\{f_1(x), f_2(x), \dots, f_n(x)\}$ and min $\{f_1(x), f_2(x), \dots, f_n(x)\}$ are measurable.

Proof: For any C:

 $\{x \in E | \max\{f_1(x), f_2(x), \dots, f_n(x)\} > c\} = \bigcup_{k=1}^n \{x \in E | f_k(x) > c\}$ $\{x \in E | \min\{f_1(x), f_2(x), \dots, f_n(x)\} < c\} = \bigcup_{k=1}^n \{x \in E | f_k(x) < c\}.$ In each case the RHS is the finite union of measurable sets, hence $\max\{f_1(x), f_2(x), \dots, f_n(x)\} \text{ and } \min\{f_1(x), f_2(x), \dots, f_n(x)\} \text{ are measurable.}$ When we discuss Lebesgue integration it will be useful to work with the functions:

$$f^{+}(x) = \max \{f(x), 0\} \ge 0$$

$$f^{-}(x) = \max \{-f(x), 0\} \ge 0$$

So if f is measurable on E then so are f⁺ and f⁻.
Also $f = f^{+} - f^{-}$ on E.

Ex. Let $f: D \to \mathbb{R}$, where D is measurable. Show f is measurable if and only if $\{x \in D | f(x) > \alpha\}$ is measurable for each rational number α .

⇒ If f is measurable then $\{x \in D | f(x) > c\}$ is measurable for any real number c, thus it's measurable for any rational number α .

 $\leftarrow \text{Assume } \{x \in D | f(x) > \alpha\} \text{ is measurable for each } \alpha \in \mathbb{Q}.$ Given any $c \in \mathbb{R}$, we can find a decreasing sequence $\{\alpha_k\} \to c; \alpha_k \in \mathbb{Q}.$ $\{x \in D | f(x) > c\} = \bigcup_{k=1}^{\infty} \{x \in D | f(x) > \alpha_k\};$ So the LHS is measurable because it's the countable union of measurable sets.

Ex. Show that if $f, g: D \to \mathbb{R}$, D a measurable set and f, g measurable functions then $\{x \in D \mid f(x) > g(x)\}$ is measurable.

Since f, g are measurable functions, so is f - g. Let h(x) = f(x) - g(x). $\{x \in D | f(x) > g(x)\} = \{x \in D | h(x) > 0\}.$

But *h* is measurable so $\{x \in D | f(x) > g(x)\}$ is measurable.