
1 
 

 

                                       Continuity of Measure 

 

Def.  The restriction of the set function outer measure to the class of measurable 

sets is called the Lebesgue measure.  We will denote this by 𝑚.  Thus if 𝐸 is 

measurable  𝑚(𝐸) = 𝑚∗(𝐸). 

 

Prop.  Lebesgue measure is countably additive,  that is, if {𝐸𝑘}𝑘=1
∞  is a countable 

disjoint collection of sets then ⋃ 𝐸𝑘
∞
𝑘=1  is measurable and  

                          𝑚(⋃ 𝐸𝑘
∞
𝑘=1 ) = ∑ 𝑚(𝐸𝑘)∞

𝑘=1 . 

 

Proof:  We already know that ⋃ 𝐸𝑘
∞
𝑘=1  is measurable and the outer measure is 

subadditive thus: 

                            𝑚(⋃ 𝐸𝑘
∞
𝑘=1 ) ≤ ∑ 𝑚(𝐸𝑘)∞

𝑘=1 .  

 

Now let’s prove the inequality in the other direction. 

We know for a finite number of disjoint measurable sets: 

                             𝑚(⋃ 𝐸𝑘
𝑛
𝑘=1 ) = ∑ 𝑚(𝐸𝑘)𝑛

𝑘=1 .  

 

Since ⋃ 𝐸𝑘
∞
𝑘=1 ⊇ ⋃ 𝐸𝑘

𝑛
𝑘=1  for all 𝑛, we have : 

             𝑚(⋃ 𝐸𝑘
∞
𝑘=1 ) ≥ 𝑚(⋃ 𝐸𝑘

𝑛
𝑘=1 ) = ∑ 𝑚(𝐸𝑘).𝑛

𝑘=1      

   

Thus we have:      𝑚(⋃ 𝐸𝑘
∞
𝑘=1 ) ≥ ∑ 𝑚(𝐸𝑘).∞

𝑘=1   

 

Hence:                    𝑚(⋃ 𝐸𝑘
∞
𝑘=1 ) = ∑ 𝑚(𝐸𝑘)∞

𝑘=1 . 
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The Lebesgue measure defined on the 𝜎-algebra of Lebesgue measurable sets 

satisfies: 

1. 𝑚(𝐼) = 𝑙(𝐼) 

2. 𝑚(𝑡 + 𝐸) = 𝑚(𝐸) 

3. 𝑚(⋃ 𝐸𝑘
∞
𝑘=1 ) = ∑ 𝑚(𝐸𝑘)∞

𝑘=1 ; 𝐸𝑘 are disjoint measurable sets. 

 

Ex.  Define 𝐸∆𝐹 = (𝐸~𝐹) ∪ (𝐹~𝐸).  Suppose 𝐸 and 𝐹 are measurable sets.  

Prove 𝑚(𝐸∆𝐹) = 𝑚(𝐸 ∩ 𝐹𝑐) + 𝑚(𝐹 ∩ 𝐸𝑐). 

 

 

 

 

𝐸∆𝐹 = (𝐸~𝐹) ∪ (𝐹~𝐸) = (𝐸 ∩ 𝐹𝑐) ∪ (𝐹 ∩ 𝐸𝑐).  

 

Since (𝐸 ∩ 𝐹𝑐) and (𝐹 ∩ 𝐸𝑐) are disjoint and measurable we have: 

𝑚(𝐸∆𝐹) = 𝑚((𝐸 ∩ 𝐹𝑐) ∪ (𝐹 ∩ 𝐸𝑐)) = 𝑚((𝐸 ∩ 𝐹𝑐)) + 𝑚((𝐹 ∩ 𝐸𝑐)) .  

 

 

Def.  {𝐸𝑘}𝑘=1
∞  is said to be ascending if for each 𝑘 𝐸𝑘 ⊆ 𝐸𝑘+1, and descending 

if for each 𝑘 𝐸𝑘 ⊇ 𝐸𝑘+1. 

 

 

 

 

𝐸 
𝐹 

𝐸∆𝐹 
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Theorem (The Continuity of Measure): 

1. If{𝐴𝑘}𝑘=1
∞   is an ascending collection of measurable sets, then 

                      𝑚(⋃ 𝐴𝑘) = lim
𝑘→∞

𝑚(∞
𝑘=1 𝐴𝑘) 

2. If{𝐵𝑘}𝑘=1
∞   is an descending collection of measurable sets and       

𝑚(𝐵1) < ∞, then  

                      𝑚(⋂ 𝐵𝑘) = lim
𝑘→∞

𝑚(𝐵𝑘)∞
𝑘=1 . 

 

Proof:  1.  If for any 𝑘,  𝑚(𝐴𝑘) = ∞ then by monotonicity 

                𝑚(⋃ 𝐴𝑘) ≥ 𝑚(∞
𝑘=1 𝐴𝑘) = ∞, so the conclusion holds.  

 

If 𝑚(𝐴𝑘) < ∞ for all 𝑘 ≥ 1,  then define 𝐴0 = 𝜙 and 𝐸𝑘 = 𝐴𝑘~𝐴𝑘−1.  

 

 

 

 

 

 

 

Since 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ⊆ ⋯, the 𝐸𝑘’s disjoint and ⋃ 𝐴𝑘 = ⋃ 𝐸𝑘
∞
𝑘=1

∞
𝑘=1 : 

     𝑚(⋃ 𝐴𝑘) = 𝑚(⋃ 𝐸𝑘) = ∑ 𝑚(𝐴𝑘~𝐴𝑘−1)∞
𝑘=1

∞
𝑘=1

∞
𝑘=1 .  

 

Since 𝐴𝑘−1 ⊆ 𝐴𝑘: 

∑ 𝑚(𝐴𝑘~𝐴𝑘−1)

∞

𝑘=1

= ∑(𝑚(𝐴𝑘) − 𝑚(𝐴𝑘−1))

∞

𝑘=1

 

                                                         = lim
𝑛→∞

∑ (𝑚(𝐴𝑘) − 𝑚(𝐴𝑘−1))𝑛
𝑘=1  

                                                         = lim
𝑛→∞

𝑚(𝐴𝑛). 

𝐴1 

𝐴2 

𝐴3 
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To prove 2,  let  𝐹𝑘 = 𝐵1~𝐵𝑘, for each 𝑘.    

Since {𝐵𝑘}𝑘=1
∞  is descending {𝐹𝑘}𝑘=1

∞  is ascending.  

 

By part 1,       𝑚(⋃ 𝐹𝑘) = lim
𝑘→∞

𝑚(∞
𝑘=1 𝐹𝑘).  

 

However,  ⋃ 𝐹𝑘 = ⋃ (𝐵1~𝐵𝑘) = 𝐵1~ ⋂ 𝐵𝑘
∞
𝑘=1

∞
𝑘=1

∞
𝑘=1 .  

 

 

 

For each 𝑘,  𝑚(𝐵𝑘) < ∞  so    𝑚(𝐹𝑘) = 𝑚(𝐵1) − 𝑚(𝐵𝑘).  Thus  

 

lim
𝑘→∞

𝑚(𝐹𝑘) = 𝑚(⋃ 𝐹𝑘) = 𝑚(𝐵1~ ⋂ 𝐵𝑘) = lim
𝑘→∞

(𝑚(𝐵1) − 𝑚(𝐵𝑘))∞
𝑘=1

∞
𝑘=1 . 

   

 

 

 Since ⋂ 𝐵𝑘 ⊆ 𝐵1
∞
𝑘=1  

        𝑚(𝐵1~ ⋂ 𝐵𝑘) = 𝑚(𝐵1) − 𝑚(⋂ 𝐵𝑘)∞
𝑘=1

∞
𝑘=1 . 

 

So we have:     

        𝑚(𝐵1) − 𝑚(⋂ 𝐵𝑘) = 𝑚(𝐵1) − lim
𝑘→∞

(𝐵𝑘)∞
𝑘=1    

 

 

Or:        𝑚(⋂ 𝐵𝑘) = lim
𝑘→∞

𝑚(𝐵𝑘)∞
𝑘=1 .  

 

Note:  𝑚(𝐵1) must be finite since if 𝐵𝑛 = [𝑛, ∞), then 𝑚(⋂ 𝐵𝑛) = 0∞
𝑛=1 , but 

lim
𝑛→∞

𝑚(𝐵𝑛) = ∞. 
 

 

 

Def. For a measurable set 𝐸 we say a property holds almost everywhere (a.e.) on 

𝐸 provided there is a subset 𝐸0 ⊆ 𝐸 for which 𝑚(𝐸0) = 0 and the property 

holds for all 𝑥 ∈ (𝐸~𝐸0). 

 

Ex.  Suppose 𝑓(𝑥) = 1     if 𝑥 is irrational and  𝑓(𝑥) = 0  if 𝑥 is rational. 

       We would then say that 𝑓(𝑥) = 1 almost everywhere (a.e.) on ℝ.  

       

The Borel-Cantelli Lemma: Let {𝐸𝑘}𝑘=1
∞  be a countable collection of measurable 

sets for which ∑ 𝑚(𝐸𝑘)∞
𝑘=1 < ∞.  Then almost all 𝑥 ∈ ℝ belong to at most 

finitely many of the 𝐸𝑘’s.  
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Proof:  By countable subadditivity of 𝑚 we have: 

                    𝑚(⋃ 𝐸𝑘
∞
𝑘=1 ) ≤ ∑ 𝑚(𝐸𝑘)∞

𝑘=1 < ∞.  

 

         If we let 𝐴𝑛 = ⋃ 𝐸𝑘
∞
𝑘=𝑛  then we have  𝐴𝑛+1 ⊆ 𝐴𝑛.  

 

         Thus by the continuity of measure: 

   𝑚(⋂ 𝐴𝑛) = lim
𝑛→∞

𝑚(𝐴𝑛) = lim
𝑛→∞

𝑚(⋃ 𝐸𝑘
∞
𝑘=𝑛 )∞

𝑛=1                                                      

                           ≤ lim
      𝑛→∞

∑ 𝑚(𝐸𝑘)∞
𝑘=𝑛 = 0 . 

Thus almost all 𝑥 ∈ ℝ fail to belong to ⋂ 𝐴𝑛 = ⋂ (⋃ 𝐸𝑘)∞
𝑘=𝑛

∞
𝑛=1

∞
𝑛=1 . 

Hence 𝑥 belongs to at most a finite number of the 𝐸𝑘’s. 

 

Properties of Lebesgue measure 

1. Countable and finite additivity.  If {𝐸𝑘} (finite or countable) are disjoint and 

measurable then 

                𝑚(⋃ 𝐸𝑘) = ∑ 𝑚(𝐸𝑘)∞
𝑘=1

∞
𝑘=1  

 

2. Monotonicity:  If 𝐴 ⊆ 𝐵, 𝐴, 𝐵 measurable then 

                  𝑚(𝐴) ≤ 𝑚(𝐵) 

 

3. Excision:  If 𝐴 ⊆ 𝐵 and 𝑚(𝐴) < ∞ then 

                   𝑚(𝐵~𝐴) = 𝑚(𝐵) − 𝑚(𝐴). 

           If 𝑚(𝐴) = 0   then  𝑚(𝐵~𝐴) = 𝑚(𝐵). 

 

4. Countable Monotonicity:  For any collection  {𝐸𝑘}𝑘=1
∞  of measurable sets 

that covers a measurable set 𝐸 

       𝑚(𝐸) ≤ ∑ 𝑚(𝐸𝑘)∞
𝑘=1 . 


