Approximating Lebesgue Measurable Sets

So far we know the following about measurable sets:

- 1. They form a σ -algebra (so closed under countable unions and complements hence also closed under countable intersections)
- 2. They contain all Borel sets (the smallest σ -algebra containing all open subsets of ℝ)
- 3. All sets of measure 0 are measurable.

Measurable sets contain the following **excision property**. If A is measurable of finite outer measure and $A \subseteq E$, then

$$
m^*(E\sim A)=m^*(E)-m^*(A)
$$

since:

$$
m^*(E) = m^*(E \cap A) + m^*(E \cap A^c) = m^*(A) + m^*(E \sim A).
$$

And since $m^*(A)$ is finite we have:

$$
m^*(E\!\sim\!A)=m^*(E)-m^*(A).
$$

Theorem: Let E be any set of real numbers. Then each of the following is equivalent to the measurability of E :

- 1. For each $\epsilon > 0$, there's an open set $O \supseteq E$ where $m^*(O {\sim} E) < \epsilon$
- 2. There is a G_δ set $G\supseteq E$ for which $m^*(G\!\sim\!E)=0$
- 3. For each $\epsilon > 0$, there's an closed set $F \subseteq E$ where $m^*(E{\sim}F) < \epsilon$
- 4. There is an F_{σ} set $F \subseteq E$ where $m^*(E{\sim}F)=0.$

Proof: Assume E is measurable and let $\epsilon > 0$ be given.

If $m^*(E) < \infty$ then by the definition of an outer measure there is a collection ${I_k}_{k=1}^{\infty}$ of open intervals which covers E and has

$$
\sum_{k=1}^{\infty} l(I_k) < m^*(E) + \epsilon.
$$

Let $O = \bigcup_{k=1}^{\infty} I_k$ $_{k=1}^{\infty}$ I_{k} , then O is an open set containing E_{+} In addition:

$$
m^*(0) \le \sum_{k=1}^{\infty} l(I_k) < m^*(E) + \epsilon,
$$

So $m^*(0) - m^*(E) < \epsilon$.

Since E is measurable and has finite measure, by the excision property:

$$
m^*(O \sim E) = m^*(O) - m^*(E) < \epsilon.
$$

If $m^*(E) = \infty$, let $E_k = E \cap [k, k + 1]$ and $E = \bigcup_{k \in \mathbb{Z}} E_k$, a countable union measurable sets, each with finite measure.

By the first part we know there is an open set $O_k \supseteq E_k$ with

$$
m^*(O_k \sim E_k) < \frac{\epsilon}{2^{|k|+2}}.
$$

Now let $0 = \bigcup_{k \in \mathbb{Z}} O_k$.

O is open, $O \supseteq E$, and $O \sim E = \bigcup_{k \in \mathbb{Z}} O_k \sim E \subseteq \bigcup_{k \in \mathbb{Z}} (O_k \sim E_k)$.

(Draw a picture with 2 pairs of sets, O_1 , O_2 , and E_1 , E_2 to see this is true.)

Therefore:

$$
m^*(O \sim E) \le \sum_{k \in \mathbb{Z}} m^*(O_k \sim E_k) < \sum_{k \in \mathbb{Z}} \frac{\epsilon}{2^{|k|+2}} < \epsilon
$$

 $1 \Rightarrow 2$:

For each $\epsilon > 0$, there's an open set $O \supseteq E$ where $m^*(O {\sim} E) < \epsilon.$ For each $n>0$, choose $O_n\supseteq E$ an open set with $\,m^*(O_n{\sim}E) < \frac{1}{n}$ $\frac{1}{n}$. Let $G = \bigcap_{n=1}^{\infty} O_n$ $_{n=1}^{\infty}$ O_n .

G is a G_{δ} set and $G \supseteq E$.

In addition, for each $n, G \sim E \subseteq O_n \sim E$. Thus $m^*(G \sim E) \leq m^*(O_n \sim E) < \frac{1}{n}$ $\frac{1}{n}$, for all n . Hence $m^*(G \sim E) = 0$.

Now let's show that $2 \Rightarrow E$ is measurable. Since there is a G_δ set $G\supseteq E$ for which $m^*(G\!\sim\!E)=0$, $G \sim E$ has measure 0 and is hence measurable.

G is a G_{δ} set, hence it's measurable. Thus E is measurable because

$$
E = G \cap (G \sim E)^c.
$$

3 and 4 follow from the fact that a set is measurable if and only if its complement is measurable, is open if and only if its complement is closed, is F_{σ} if and only if its complement if G_{δ} , and

 $E \sim \bigcup_{k=1}^{\infty} V_k = \bigcap_{k=1}^{\infty} (E \sim V_k), \qquad E \sim \bigcap_{k=1}^{\infty} V_k = \bigcup_{k=1}^{\infty} (E \sim V_k)$ $k=1$ ∞ $k=1$ ∞ $k=1$ ∞ $E_{k=1}^{\infty} V_k = \bigcap_{k=1}^{\infty} (E \sim V_k), \qquad E \sim \bigcap_{k=1}^{\infty} V_k = \bigcup_{k=1}^{\infty} (E \sim V_k).$

(DeMorgan Identities).

Ex. show with an example that It is not true that

a. if E is measurable then there exists a closed set F such that if $E \subseteq F$ and $m^*(F \sim E) < \epsilon$

b. if E is measurable then there exists an open set O such that $0 \subseteq E$ and $m^*(E \sim 0) < \epsilon$.

a. Let $E = \mathbb{Q} \cap [0,1].$

Then any closed set $F \supseteq E$ must have $F \supseteq [0,1]$, since F must contain all limit points of E .

Hence $m^*(F) \geq 1$, but $m^*(E) = 0$.

Thus if $\epsilon = \frac{1}{2}$ $\frac{1}{2}$, for example, then $m^*(F\!\sim\!E) \nless \epsilon$.

b. Let $E = [0,1] \sim (\mathbb{Q} \cap [0,1])$ =set of irrational numbers between 0 and 1. But the only open set E contains is the empty set, ϕ .

Thus $m^*(E) = 1$ and $m^*(\phi) = 0$. Hence if $\epsilon = \frac{1}{2}$ $\frac{1}{2}$, for example, then $m^*(E \sim \phi) \nless \epsilon$. Ex. Use as a definition of a measurable set that E is measurable if there exists a G_δ set $G\supseteq E$ for which $m^*(G\!\sim\!E)=0$ and prove that the union of two measurable sets is measurable.

Let D and E be measurable sets.

Thus there exists G_δ sets $G\supseteq D$ and $H\supseteq E$ with $m^*(G\!\sim\!D)=0$ and $m^*(H \sim E) = 0$.

We must show there exists a G_δ set $K \supseteq D \cup E$ with $m^*(K {\sim} (D \cup E)) = 0.$

Let's show $K = G \cup H$ works.

K is a G_{δ} set because it's the union of G_{δ} sets.

 $G \sim D = G \cap D^c$, and $H \sim E = H \cap E^c$.

Notice that:

$$
(G \cup H) \sim (D \cup E) = (G \cup H) \cap (D \cup E)^c \subseteq (G \cap D^c) \cup (H \cap E^c)
$$

(draw a picture to see that this is true)

Thus:
$$
m^*((G \cup H) \sim (D \cup E)) \le m^*((G \cap D^c) \cup (H \cap E^c))
$$

\n $\le m^*((G \cap D^c)) + m^*((H \cap E^c))$
\n $= m^*(G \sim D) + m^*(H \sim E) = 0 + 0 = 0.$

Thus $D \cup E$ is measurable.

Theorem: Let E be a measurable set of finite outer measure. Then for each $\epsilon > 0$, there is a finite disjoint collection of open intervals $\{I_k\}_{k=1}^n$ for which if $0 = \bigcup_{k=1}^{n} I_k$ $_{k=1}^{n}$ I_{k} , then

$$
m^*(E\sim O) + m^*(O\sim E) < \epsilon.
$$

Proof: We know that if E is measurable then there is an open set U such that $E \subseteq U$ and $m^*(U{\sim}E) < \frac{\epsilon}{2}$ $\frac{1}{2}$.

Since U is open it's measurable and has finite measure because E does.

Every open set of real numbers is the union of a countable collection of disjoint open intervals $\{I_j\}_{j=1}^{\infty}$, thus $U = \bigcup_{j=1}^{\infty} I_j$ $\sum_{j=1}^{\infty} I_j$.

Now we know that for all n :

$$
\sum_{j=1}^n l(I_j) = m^*(\bigcup_{j=1}^n I_j) \le m^*(U) < \infty.
$$

Thus $\sum_{i=1}^{\infty} l(i)$ $\sum_{j=1}^{\infty} l(I_j) < \infty.$

Choose an *n* such that $\sum_{i=n+1}^{\infty} l(i)$ $\sum_{j=n+1}^{\infty} l(I_j) < \frac{\epsilon}{2}$ $\frac{1}{2}$. Define $O = \bigcup_{j=1}^n I_j$ $\prod_{j=1}^n I_j$.

Since $O \sim E \subseteq U \sim E$ we have:

$$
m^*(O \sim E) \le m^*(U \sim E) < \frac{\epsilon}{2}.
$$

However, since $E \subseteq U$

$$
E \sim O \subseteq U \sim O = \bigcup_{j=n+1}^{\infty} I_j.
$$

So: $m^*(E \sim 0) \le \sum_{i=n+1}^{\infty} l(i)$ $\sum_{j=n+1}^{\infty} l(I_j) < \frac{\epsilon}{2}$ $\frac{1}{2}$.

Thus we have: $m^*(E\!\sim\!0)+m^*(O\!\sim\!E)<\epsilon.$