Approximating Lebesgue Measurable Sets- HW Problems

1. If *E* is a measurable set, show that E + r and rE are measurable for any $r \in \mathbb{R}$.

2. If $m^*(E) = 0$ prove that there is a Borel set G, where $E \subseteq G$ and $m^*(G) = 0$.

3. Show that a set *E* is measurable if and only if for every $\epsilon > 0$ there is an open set *O* and a closed set *F* with $F \subseteq E \subseteq O$ and $m^*(O \sim F) < \epsilon$.

4. Suppose that $m^*(E) < \infty$. Show that if *E* is not measurable then there exists an open set $O \supseteq E$, with $m^*(O) < \infty$ such that

 $m^*(0 \sim E) > m^*(0) - m^*(E).$