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                      Bounded Linear Functionals on 𝐿𝑝 Spaces 

 

Def.  A linear functional on a linear space 𝑋 is a real valued function 𝑇 on 𝑋 such 

that for 𝑔, ℎ ∈ 𝑋 and 𝛼, 𝛽 ∈ ℝ 

                                𝑇(𝛼𝑔 + 𝛽ℎ) = 𝛼𝑇(𝑔) + 𝛽𝑇(ℎ).  

 

Notice that if 𝑇, 𝑆 are linear functionals on 𝑋, so is 𝑎𝑇 + 𝑏𝑆, 𝑎, 𝑏 ∈ ℝ. 

Since the functional 𝑇: 𝑋 → ℝ  defined by 𝑇(𝑔) = 0 for all 𝑔 ∈ 𝑋 is linear, the 

set of linear functionals on 𝑋 is itself a linear space. 

 

Ex.  Let 𝐸 be a measurable set, 1 ≤ 𝑝 < ∞ and 𝑞 the conjugate of 𝑝. If         

𝑔 ∈ 𝐿𝑞(𝐸) then define: 

                                    𝑇: 𝐿𝑝(𝐸) → ℝ 

                          by          𝑇(𝑓) = ∫ 𝑓𝑔
𝐸

;    𝑓 ∈ 𝐿𝑝(𝐸). 

By the Holder inequality 𝑓𝑔 ∈ 𝐿1(𝐸). 

𝑇 is linear because integration over 𝐸 is linear.  Notice also that: 

                    |𝑇(𝑓)| = | ∫ 𝑓𝑔
𝐸

| ≤ ∫ |𝑓𝑔| ≤ ‖𝑓‖𝑝‖𝑔‖𝑞𝐸
 

For all 𝑓 ∈ 𝐿𝑝(𝐸). 

 

Def.  For a normed linear space 𝑋, a linear functional is said to be bounded if 

there is an 𝑀 ≥ 0 such that: 

                              |𝑇(𝑓)| ≤ 𝑀‖𝑓‖    for all 𝑓 ∈ 𝑋. 

The infimum of all such 𝑀 is called the norm of 𝑇, denoted ‖𝑇‖∗. 
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Ex.  𝑇: 𝐿𝑝(𝐸) → ℝ by 𝑇(𝑓) = ∫ 𝑓𝑔
𝐸

;    𝑓 ∈ 𝐿𝑝(𝐸), with a fixed                     

𝑔 ∈ 𝐿𝑞(𝐸), is a bounded linear functional since 

                 |𝑇(𝑓)| ≤ ∫ |𝑓𝑔| ≤ ‖𝑓‖𝑝‖𝑔‖𝑞𝐸
,      (𝑀 = ‖𝑔‖𝑞). 

 

Let 𝑇 be a bounded linear functional on 𝑋, and 𝑀 = ‖𝑇‖∗.  Then for any   

𝑓, ℎ ∈ 𝑋: 

              |𝑇(𝑓) − 𝑇(ℎ)| = |𝑇(𝑓 − ℎ)| ≤ ‖𝑇‖∗‖𝑓 − ℎ‖.  

 

Thus if 𝑓𝑛 → 𝑓 in 𝑋 then : 

          |𝑇(𝑓𝑛) − 𝑇(𝑓)| ≤ ‖𝑇‖∗‖𝑓𝑛 − 𝑓‖.  

 

So if lim
𝑛→∞

‖𝑓𝑛 − 𝑓‖ = 0  then lim
𝑛→∞

|𝑇(𝑓𝑛) − 𝑇(𝑓)| = 0. 

That is, if 𝑇 is a bounded linear functional on 𝑋 and 𝑓𝑛 → 𝑓 in 𝑋 then the 

sequence of real numbers {𝑇(𝑓𝑛)} converges to 𝑇(𝑓) in ℝ, ie 𝑇 is a continuous 

map from 𝑋 to ℝ. 

 

Because 𝑇 is linear  

        ‖𝑇‖∗ = inf{𝑀| |𝑇(𝑓)| ≤ 𝑀‖𝑓‖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝑋} 

                  = sup{𝑇(𝑓)|  𝑓 ∈ 𝑋, ‖𝑓‖ ≤ 1}  

Since if 𝑓 ≠ 0 then |𝑇 (
𝑓

‖𝑓‖
) | ≤ 𝑀   ⟺   |𝑇(𝑓)| ≤ 𝑀‖𝑓‖.     

 

Prop.  Let 𝑋 be a normed linear space.  Then the collection of bounded linear 

functionals on 𝑋 is a linear space on which ‖ ‖∗ is a norm.  This normed linear 

space is called the dual space of 𝑿 and is denoted 𝑋∗. 
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Prop.  Let 𝐸 be a measurable set, 1 ≤ 𝑝 < ∞,  𝑞 the conjugate of 𝑝, and       

𝑔 ∈ 𝐿𝑞(𝐸).  Define 𝑇 on 𝐿𝑝(𝐸) by 𝑇(𝑓) = ∫ 𝑔𝑓
𝐸

 for all 𝑓 ∈ 𝐿𝑝(𝐸).  Then 

𝑇 is a bounded linear functional on 𝐿𝑝(𝐸) and ‖𝑇‖∗ = ‖𝑔‖𝑞 . 

 

Proof:  We already saw that 𝑇 is a bounded linear functional on 𝐿𝑝(𝐸) and 

‖𝑇‖∗ ≤ ‖𝑔‖𝑞. 

Assume 𝑝 > 1. 

To show ‖𝑇‖∗ = ‖𝑔‖𝑞 let’s find a function 𝑓 such that: 

                          |𝑇(𝑓)| = ‖𝑔‖𝑞‖𝑓‖𝑝.  

 

Let 𝑓 = 𝑠𝑔𝑛(𝑔)|𝑔|
𝑞

𝑝. 

𝑇(𝑓) = ∫ (𝑠𝑔𝑛(𝑔))|𝑔|
𝑞

𝑝𝑔 = ∫ |𝑔|
𝑞

𝑝|𝑔| = ∫ |𝑔|
(1+

𝑞

𝑝
)

𝐸𝐸𝐸
= ∫ |𝑔|𝑞

𝐸
.  

 

 

Now let’s show   𝑇(𝑓) = ∫ |𝑔|𝑞
𝐸

= ‖𝑔‖𝑞‖𝑓‖𝑝. 

 ‖𝑓‖𝑝 = [∫ (|𝑔|
𝑞

𝑝)𝑝]
𝐸

1

𝑝

= [∫ |𝑔|𝑞]
𝐸

1

𝑝
  

 

‖𝑔‖𝑞 = [∫ |𝑔|𝑞]
𝐸

1

𝑞
   

 

‖𝑔‖𝑞‖𝑓‖𝑝 = [∫ |𝑔|𝑞]
𝐸

1

𝑞
 [∫ |𝑔|𝑞]

𝐸

1

𝑝
                                                                          

                     = [∫ |𝑔|𝑞]
𝐸

(
1

𝑝
+

1

𝑞
)

= ∫ |𝑔|𝑞 = 𝑇(𝑓)
𝐸

.  

 

So ‖𝑇‖∗ = ‖𝑔‖𝑞. 
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If 𝑝 = 1 we argue by contradiction.  

 

If ‖𝑔‖∞ > ‖𝑇‖∗ then there is 𝐴 with 𝑚(𝐴) > 0, where |𝑔(𝑥)| > ‖𝑇‖∗. 

For 𝑥 ∈ 𝐴 let   𝑓 =
1

𝑚(𝐴)
(𝑠𝑔𝑛(𝑔))𝜒𝐴.        

 

Then ‖𝑓‖1 = ∫ |
𝐸

1

𝑚(𝐴)
(𝑠𝑔𝑛(𝑔))𝜒𝐴| = 1.    

 

But we have: 

 𝑇(𝑓) = ∫
1

𝑚(𝐴)
(𝑠𝑔𝑛(𝑔))𝜒𝐴𝑔 = ∫

1

𝑚(𝐴)
𝜒𝐴|𝑔| = ∫

1

𝑚(𝐴)
|𝑔|

𝐴𝐸𝐸
> ‖𝑇‖∗  

 

Which is a contradiction, so ‖𝑔‖∞ = ‖𝑇‖∗. 

 

Our goal is to show that every bounded linear functional on 𝐿𝑝(𝐸) looks like 

𝑇(𝑓) = ∫ 𝑓𝑔
𝐸

  for some 𝑔 ∈ 𝐿𝑞(𝐸). 

 

Prop.  Let 𝑇 and 𝑆 be bounded linear functionals on a normed linear space 𝑋.  If 

𝑇 = 𝑆 on a dense subset 𝑋0 of 𝑋 then 𝑇 = 𝑆 on 𝑋.  

 

Proof:  Let 𝑔 ∈ 𝑋. 

Since 𝑋0 is dense in 𝑋 there is a sequence {𝑔𝑛} in 𝑋0 such that 𝑔𝑛 → 𝑔 in 𝑋.  

Since 𝑆 and 𝑇 are bounded linear functionals: 

             𝑇(𝑔𝑛) → 𝑇(𝑔)    and  𝑆(𝑔𝑛) → 𝑆(𝑔).  

 

But since     𝑆(𝑔𝑛) = 𝑇(𝑔𝑛)  for all 𝑛,  𝑇(𝑔) = 𝑆(𝑔).  

So 𝑇 = 𝑆 on 𝑋. 
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Lemma:  Let 𝐸 be a measurable set and 1 ≤ 𝑝 < ∞.  Suppose 𝑔 is integrable 

over 𝐸 and there is an 𝑀 ≥ 0 for which 

                 ∫ 𝑔𝑓 ≤ 𝑀‖𝑓‖𝑝𝐸
  for every simple function 𝑓 ∈ 𝐿𝑝(𝐸). 

Then 𝑔 ∈ 𝐿𝑞(𝐸), where 𝑞 is the conjugate of 𝑝 and ‖𝑔‖𝑞 ≤ 𝑀. 

 

Outline of Proof:  For 𝑝 > 1. 

The Simple Approximation Theorem says there exists 𝜑𝑛 → |𝑔|,  𝜑𝑛 simple and 

0 ≤ 𝜑𝑛 ≤ |𝑔|. 

Thus 𝜑𝑛
𝑞 → |𝑔|𝑞 .  

So by Fatou’s lemma:    ∫ |𝑔|𝑞 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝜑𝑛
𝑞

𝐸𝐸
. 

Now show ∫ 𝜑𝑛
𝑞

𝐸
≤ 𝑀𝑞, and thus 𝑔 ∈ 𝐿𝑞(𝐸) and ‖𝑔‖𝑞 ≤ 𝑀.  

 

 

If 𝑝 = 1, show 𝑀 = 𝑒𝑠𝑠𝑠𝑢𝑝(𝑔). 

Assume 𝑀 > 𝑒𝑠𝑠𝑠𝑢𝑝(𝑔) and get a contradiction.  

 

Let 𝐸𝜖 = {𝑥 ∈ 𝐸| |𝑔(𝑥) > 𝑀 + 𝜖} with 𝑚(𝐸𝜖) > 0.  

 

Let 𝑓 = 𝜒𝐸𝜖
(𝑠𝑔𝑛(𝑔)) then     

| ∫ 𝑓𝑔| = ∫ |𝑔| ≥ (𝑀 + 𝜖)(𝑚(
𝐸𝜖𝐸

𝐸𝜖)) = (𝑀 + 𝜖)‖𝑓‖1 .  

 

Which is a contradiction.   

Thus 𝑀 = 𝑒𝑠𝑠𝑠𝑢𝑝(𝑔). 
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Theorem:  Let [𝑎, 𝑏] be a closed, bounded interval and 1 ≤ 𝑝 < ∞.  Suppose 𝑇 

is a bounded linear functional on 𝐿𝑝[𝑎, 𝑏].  Then there is a function                   

𝑔 ∈ 𝐿𝑞[𝑎, 𝑏], where 𝑞 is the conjugate of 𝑝, such that 

                𝑇(𝑓) = ∫ 𝑓𝑔
[𝑎,𝑏]

   for all 𝑓 ∈ 𝐿𝑝[𝑎, 𝑏].   

 

 

Outline of Proof:  Let Φ(𝑥) = 𝑇(𝜒[𝑎,𝑥)). 

Show that Φ(𝑥) is absolutely continuous and hence 

 Φ(𝑥) = Φ(𝑎) + ∫ 𝑔
𝑥

𝑎
,   where 𝑔 = Φ′ and 𝑥 ∈ [𝑎, 𝑏].  

 

Now show 𝑇(𝑓) = ∫ 𝑓𝑔
[𝑎,𝑏]

  when 𝑓 is a step function.  

 

Now show 𝑇(𝑓) = ∫ 𝑓𝑔
[𝑎,𝑏]

  when 𝑓 is a simple function, by taking a sequence 

of step functions 𝜑𝑛 which converge to 𝑓.  

 

The previous lemma now shows 𝑔 ∈ 𝐿𝑞[𝑎, 𝑏].  

 

Simple functions are dense in 𝐿𝑝[𝑎, 𝑏] ⟹ result for 𝑓 ∈ 𝐿𝑝[𝑎, 𝑏].   
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The Riesz Representation Theorem for the dual of 𝐿𝑝(𝐸).   

Let 𝐸 be measurable and 1 ≤ 𝑝 < ∞, and 𝑞 the conjugate of 𝑝.  For each     

𝑔 ∈ 𝐿𝑞(𝐸), define the bounded linear functional 𝑅𝑔 on 𝐿𝑝(𝐸) by 

                          𝑅𝑔(𝑓) = ∫ 𝑔𝑓
𝐸

    for all  𝑓 ∈ 𝐿𝑝(𝐸). 

Then for each bounded linear functional 𝑇 on 𝐿𝑝(𝐸), there is a unique            

𝑔 ∈ 𝐿𝑞(𝐸) for which 𝑅𝑔 = 𝑇 and ‖𝑇‖∗ = ‖𝑔‖𝑞. 

 

Outline of Proof:  First prove uniqueness, i.e., if 𝑅𝑔1
= 𝑅𝑔2

 then 𝑔1 = 𝑔2. 

By linearity 𝑅𝑔1
− 𝑅𝑔2

= 𝑅𝑔1−𝑔2
, so 𝑅𝑔1

= 𝑅𝑔2
⟹ 𝑅𝑔1−𝑔2

= 0. 

But then ‖𝑔1−𝑔2‖𝑞 = 0,  thus 𝑔1 = 𝑔2 a.e.  

 

The previous theorem gives the result for 𝐸 = [−𝑛, 𝑛], i.e. 

𝑅𝑔(𝑓) = 𝑇𝑛(𝑓) = ∫ 𝑔𝑛𝑓 ;      𝑔𝑛 ∈
𝑛

−𝑛
𝐿𝑞[−𝑛, 𝑛],   ‖𝑇𝑛‖∗ = ‖𝑔𝑛‖𝑞.  

 

Consider the sequence of {|𝑔𝑛|𝑞} converging to |𝑔|𝑞 .  

Applying Fatou’s lemma:      

                          ∫ |𝑔|𝑞 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓
ℝ ∫ |𝑔𝑛|𝑞

ℝ
≤ ‖𝑇𝑛‖∗

𝑞
≤ ‖𝑇‖∗

𝑞
 

So 𝑔 ∈ 𝐿𝑞(ℝ).  

Mow get the result for 𝑓 ∈ 𝐿𝑝(ℝ), where 𝑓 vanishes outside a bounded set 

which is dense in 𝐿𝑝(ℝ).  The result for 𝐿𝑝(ℝ) follows from denseness. 

To get the result for 𝐸 ⊆ ℝ, define 𝑇(𝑓) = 𝑇(𝑓|𝐸). 

𝑇 = 𝑅𝑔 for some 𝑔 ∈ 𝐿𝑞(ℝ). 

Now define 𝑔 = 𝑔|𝐸   then 𝑇 = 𝑅𝑔. 


