Bounded Linear Functionals on L^p Spaces

Def. A **linear functional** on a linear space *X* is a real valued function *T* on *X* such that for $g, h \in X$ and $\alpha, \beta \in \mathbb{R}$

$$T(\alpha g + \beta h) = \alpha T(g) + \beta T(h).$$

Notice that if T, S are linear functionals on X, so is aT + bS, $a, b \in \mathbb{R}$.

Since the functional $T: X \to \mathbb{R}$ defined by T(g) = 0 for all $g \in X$ is linear, the set of linear functionals on X is itself a linear space.

Ex. Let *E* be a measurable set, $1 \le p < \infty$ and *q* the conjugate of *p*. If $g \in L^q(E)$ then define:

$$T: L^p(E) \to \mathbb{R}$$

by $T(f) = \int_E fg; f \in L^p(E).$

By the Holder inequality $fg \in L^1(E)$.

T is linear because integration over E is linear. Notice also that:

$$|T(f)| = |\int_{E} fg| \le \int_{E} |fg| \le ||f||_{p} ||g||_{q}$$

For all $f \in L^p(E)$.

Def. For a normed linear space X, a linear functional is said to be **bounded** if there is an $M \ge 0$ such that:

$$|T(f)| \le M ||f||$$
 for all $f \in X$.

The infimum of all such M is called the norm of T, denoted $||T||_*$.

Ex. $T: L^p(E) \to \mathbb{R}$ by $T(f) = \int_E fg; f \in L^p(E)$, with a fixed $g \in L^q(E)$, is a bounded linear functional since

$$|T(f)| \le \int_E |fg| \le ||f||_p ||g||_q, \quad (M = ||g||_q).$$

Let T be a bounded linear functional on X, and $M = ||T||_*$. Then for any $f, h \in X$:

$$|T(f) - T(h)| = |T(f - h)| \le ||T||_* ||f - h||.$$

Thus if $f_n \to f$ in X then :

$$|T(f_n) - T(f)| \le ||T||_* ||f_n - f||.$$

So if $\lim_{n\to\infty} ||f_n - f|| = 0$ then $\lim_{n\to\infty} |T(f_n) - T(f)| = 0$.

That is, if T is a bounded linear functional on X and $f_n \to f$ in X then the sequence of real numbers $\{T(f_n)\}$ converges to T(f) in \mathbb{R} , ie T is a continuous map from X to \mathbb{R} .

Because T is linear

$$\|T\|_* = \inf\{M \mid |T(f)| \le M \|f\|, \text{ for all } f \in X\}$$
$$= \sup\{T(f) \mid f \in X, \|f\| \le 1\}$$
Since if $f \ne 0$ then $|T\left(\frac{f}{\|f\|}\right)| \le M \iff |T(f)| \le M \|f\|.$

Prop. Let X be a normed linear space. Then the collection of bounded linear functionals on X is a linear space on which $\| \|_*$ is a norm. This normed linear space is called the **dual space of** X and is denoted X^* .

Prop. Let *E* be a measurable set, $1 \le p < \infty$, *q* the conjugate of *p*, and $g \in L^q(E)$. Define *T* on $L^p(E)$ by $T(f) = \int_E gf$ for all $f \in L^p(E)$. Then *T* is a bounded linear functional on $L^p(E)$ and $||T||_* = ||g||_q$.

Proof: We already saw that T is a bounded linear functional on $L^p(E)$ and $||T||_* \leq ||g||_q$.

Assume p > 1.

To show $||T||_* = ||g||_q$ let's find a function f such that:

$$|T(f)| = ||g||_q ||f||_p.$$

Let
$$f = sgn(g)|g|^{\frac{q}{p}}$$
.
 $T(f) = \int_{E} (sgn(g))|g|^{\frac{q}{p}}g = \int_{E} |g|^{\frac{q}{p}}|g| = \int_{E} |g|^{(1+\frac{q}{p})} = \int_{E} |g|^{q}$.

Now let's show $T(f) = \int_{E} |g|^{q} = ||g||_{q} ||f||_{p}$.

$$||f||_p = \left[\int_E (|g|^{\frac{q}{p}})^p\right]^{\frac{1}{p}} = \left[\int_E |g|^q\right]^{\frac{1}{p}}$$

 $||g||_q = \left[\int_E |g|^q\right]^{\frac{1}{q}}$

$$\begin{aligned} \|g\|_{q} \|f\|_{p} &= \left[\int_{E} |g|^{q}\right]^{\frac{1}{q}} \left[\int_{E} |g|^{q}\right]^{\frac{1}{p}} \\ &= \left[\int_{E} |g|^{q}\right]^{\left(\frac{1}{p} + \frac{1}{q}\right)} = \int_{E} |g|^{q} = T(f) \end{aligned}$$

So $||T||_* = ||g||_q$.

If p = 1 we argue by contradiction.

If $||g||_{\infty} > ||T||_{*}$ then there is A with m(A) > 0, where $|g(x)| > ||T||_{*}$. For $x \in A$ let $f = \frac{1}{m(A)} (sgn(g))\chi_A$.

Then $||f||_1 = \int_E |\frac{1}{m(A)} (sgn(g))\chi_A| = 1.$

But we have:

$$T(f) = \int_{E} \frac{1}{m(A)} (sgn(g)) \chi_{A}g = \int_{E} \frac{1}{m(A)} \chi_{A}|g| = \int_{A} \frac{1}{m(A)} |g| > ||T||_{*}$$

Which is a contradiction, so $||g||_{\infty} = ||T||_{*}$.

Our goal is to show that every bounded linear functional on $L^p(E)$ looks like $T(f) = \int_E fg$ for some $g \in L^q(E)$.

Prop. Let T and S be bounded linear functionals on a normed linear space X. If T = S on a dense subset X_0 of X then T = S on X.

Proof: Let $g \in X$.

Since X_0 is dense in X there is a sequence $\{g_n\}$ in X_0 such that $g_n \to g$ in X. Since S and T are bounded linear functionals:

$$T(g_n) \to T(g)$$
 and $S(g_n) \to S(g)$.

But since $S(g_n) = T(g_n)$ for all n, T(g) = S(g). So T = S on X. Lemma: Let *E* be a measurable set and $1 \le p < \infty$. Suppose *g* is integrable over *E* and there is an $M \ge 0$ for which

$$\int_{F} gf \leq M \|f\|_{p} \text{ for every simple function } f \in L^{p}(E).$$

Then $g \in L^q(E)$, where q is the conjugate of p and $||g||_q \leq M$.

Outline of Proof: For p > 1.

The Simple Approximation Theorem says there exists $\varphi_n \rightarrow |g|$, φ_n simple and $0 \leq \varphi_n \leq |g|$.

Thus $\varphi_n{}^q \to |g|^q$.

So by Fatou's lemma: $\int_E |g|^q \leq liminf \int_E \varphi_n^q$.

Now show $\int_E \varphi_n^q \leq M^q$, and thus $g \in L^q(E)$ and $\|g\|_q \leq M$.

If p = 1, show M = esssup(g).

Assume M > esssup(g) and get a contradiction.

Let
$$E_{\epsilon} = \{x \in E \mid |g(x) > M + \epsilon\}$$
 with $m(E_{\epsilon}) > 0$.

Let
$$f = \chi_{E_{\epsilon}}(sgn(g))$$
 then
 $|\int_{E} fg| = \int_{E_{\epsilon}} |g| \ge (M + \epsilon)(m(E_{\epsilon})) = (M + \epsilon)||f||_{1}$

Which is a contradiction.

Thus M = essup(g).

Theorem: Let [a, b] be a closed, bounded interval and $1 \le p < \infty$. Suppose T is a bounded linear functional on $L^p[a, b]$. Then there is a function $g \in L^q[a, b]$, where q is the conjugate of p, such that

$$T(f) = \int_{[a,b]} fg$$
 for all $f \in L^p[a,b]$.

Outline of Proof: Let $\Phi(x) = T(\chi_{[a,x)})$.

Show that $\Phi(x)$ is absolutely continuous and hence

$$\Phi(x) = \Phi(a) + \int_a^x g$$
, where $g = \Phi'$ and $x \in [a, b]$.

Now show $T(f) = \int_{[a,b]} fg$ when f is a step function.

Now show $T(f) = \int_{[a,b]} fg$ when f is a simple function, by taking a sequence of step functions φ_n which converge to f.

The previous lemma now shows $g \in L^q[a, b]$.

Simple functions are dense in $L^p[a, b] \Longrightarrow$ result for $f \in L^p[a, b]$.

The Riesz Representation Theorem for the dual of $L^{p}(E)$.

Let E be measurable and $1 \le p < \infty$, and q the conjugate of p. For each $g \in L^q(E)$, define the bounded linear functional R_g on $L^p(E)$ by

$$R_g(f) = \int_E gf$$
 for all $f \in L^p(E)$.

Then for each bounded linear functional T on $L^p(E)$, there is a unique $g \in L^q(E)$ for which $R_g = T$ and $||T||_* = ||g||_q$.

Outline of Proof: First prove uniqueness, i.e., if $R_{g_1} = R_{g_2}$ then $g_1 = g_2$. By linearity $R_{g_1} - R_{g_2} = R_{g_1-g_2}$, so $R_{g_1} = R_{g_2} \Longrightarrow R_{g_1-g_2} = 0$. But then $\|g_{1-}g_2\|_q = 0$, thus $g_1 = g_2$ a.e.

The previous theorem gives the result for E = [-n, n], i.e.

$$R_g(f) = T_n(f) = \int_{-n}^n g_n f; \quad g_n \in L^q[-n,n], \quad ||T_n||_* = ||g_n||_q.$$

Consider the sequence of $\{|g_n|^q\}$ converging to $|g|^q$.

Applying Fatou's lemma:

$$\int_{\mathbb{R}} |g|^q \le \operatorname{liminf} \int_{\mathbb{R}} |g_n|^q \le ||T_n||_*^q \le ||T||_*^q$$

So $g \in L^q(\mathbb{R})$.

Mow get the result for $f \in L^p(\mathbb{R})$, where f vanishes outside a bounded set which is dense in $L^p(\mathbb{R})$. The result for $L^p(\mathbb{R})$ follows from denseness.

To get the result for $E \subseteq \mathbb{R}$, define $\overline{T}(f) = T(f|_E)$.

 $\overline{T} = R_{\overline{q}}$ for some $\overline{g} \in L^q(\mathbb{R})$.

Now define $g = \overline{g}|_E$ then $T = R_g$.