Approximation of L^p Functions

We have already seen that if $f \in L^1(\mathbb{R})$ then given any $\epsilon > 0$ there is a simple function η , a step function S, and a continuous function g, all with finite support such that:

 $\int_{\mathbb{R}} |f - \eta| < \epsilon, \quad \int_{\mathbb{R}} |f - s| < \epsilon, \text{ and } \int_{\mathbb{R}} |f - g| < \epsilon.$

We will now extend these results to $f \in L^p(E)$.

Def. Let X be a normed linear space. Given two subsets F and G of X with $F \subseteq G$, we say F is **dense** in G if for each $g \in G$ and $\epsilon > 0$ there is an element $f \in F$ where $||f - g|| < \epsilon$.

Notice that F is dense in G if and only if for each $g \in G$ there is a sequence $\{f_n\}$ in F such that $\lim_{n \to \infty} f_n = g$ in X.

In addition for $F \subseteq G \subseteq H \subseteq X$ if F is dense in G and G is dense in H then F is dense in H.

Ex. The rational numbers are dense in \mathbb{R} .

Ex. Simple functions, step functions, and continuous functions, all with finite support are dense in $L^1(\mathbb{R})$ (and $L^1(E)$).

Prop. Let *E* be a measurable set and $1 \le p \le \infty$. Then the simple functions in $L^p(E)$ are dense in $L^p(E)$.

Proof: Let $f \in L^p(E)$.

First let $p = \infty$.

By definition, there is a subset of measure 0, E_0 , such that f is bounded on $E \sim E_0$.

From the simple approximation lemma, there is a sequence of simple functions $\{\varphi_n\}$ on $E \sim E_0$ such that $|\varphi_n| \leq |f|$ for all n on $E \sim E_0$ with $\varphi_n \to f$ uniformly on $E \sim E_0$.

Since $f \in L^{\infty}(E)$, it is bounded a.e and since $\varphi_n \to f$ uniformly on $E \sim E_0$, it converges in $L^{\infty}(E)$.

Thus simple functions are dense in $L^{\infty}(E)$.

Now assume $1 \le p < \infty$.

By the simple approximation theorem, there is a sequence of simple functions $\varphi_n \to f$ pointwise on E with $|\varphi_n| \leq |f|$ for all n.

By the integral comparison test $\varphi_n \in L^p(E)$ for all n since

 $|\varphi_n|^p \leq |f|^p$ thus $\int_E |\varphi_n|^p \leq \int_E |f|^p < \infty$.

Now notice that:

$$|\varphi_n - f|^p \le 2^p (|\varphi_n|^p + |f|^p) \le 2^{p+1} |f|^p$$
 on *E*.

Since $|f|^p$ is integrable over *E*, Lebesgue dominated convergence says:

$$\lim_{n \to \infty} \int_E |\varphi_n - f|^p = \int_E \lim_{n \to \infty} |\varphi_n - f|^p = 0.$$

So $\varphi_n \to f$ in $L^p(E)$ and simple functions are dense in $L^p(E)$.

Prop. Let [a, b] be a closed, bounded interval and $1 \le p < \infty$. Then the set of step functions is dense in $L^p[a, b]$.

Proof: By the previous proposition we only need to show that step functions are dense in simple functions on [a, b].

Every simple function is: $\varphi = \sum_{i=1}^{n} a_i \chi_{A_i}$; $A_i \subseteq [a, b]$ measurable.

Thus we only need to show we can approximate a characteristic function $\varphi = \chi_A$, where A is measurable.

Let $\epsilon > 0$.

We need a step function *s* on [a, b] such that $\|\varphi - s\|_p < \epsilon$.

Since A is a set of finite measure, for any $\epsilon > 0$ there exists a finite, disjoint collection of open intervals $\{I_k\}_{k=1}^n$ for which if $O = \bigcup_{k=1}^n I_k$, then $m(A \sim O) + m(O \sim A) < \epsilon^p$.

Now χ_0 is a step function and

$$\|\chi_A - \chi_O\|_p = [m(A \sim O) + m(O \sim A)]^{\frac{1}{p}} < (\epsilon^p)^{\frac{1}{p}} = \epsilon$$

Thus step functions are dense in $L^p[a, b]$.

Def. A normed linear space X is said to be **separable** if there is a countable subset that is dense in X.

Ex. The real numbers are separable because $\mathbb Q$ is countable and dense in $\mathbb R$.

Theorem: Let *E* be a measurable set and $1 \le p < \infty$. Then $L^p(E)$ is separable.

Proof: Let [a, b] be a closed bounded interval.

Let $S[a, b] = \{step \ functions \ s \ on \ [a, b]\}.$

Let $S_{\mathbb{Q}}[a, b] \subseteq S[a, b]$ be step functions that take on rational values and for which there is a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] with s constant on $(x_{k-1}, x_k), 1 \le k \le n$, and x_k rational for $1 \le k \le n - 1$.

Since \mathbb{Q} is dense in \mathbb{R} , $S_{\mathbb{Q}}[a, b]$ is dense in $S[a, b] \subseteq L^p[a, b]$. In addition, $S_{\mathbb{Q}}[a, b]$ is countable.

Since S[a, b] is dense in $L^p[a, b]$, $S_{\mathbb{Q}}[a, b]$ is dense in $L^p[a, b]$.

Now define F_n to be functions on \mathbb{R} that vanish outside [-n, n] and whose restriction to [-n, n] belong to $S_{\mathbb{Q}}[-n, n]$.

Let $F = \bigcup_{n \in \mathbb{Z}^+} F_n$, which is again countable.

By the monotone convergence theorem:

$$\lim_{n \to \infty} \int_{-n}^{n} |f|^{p} = \int_{\mathbb{R}} |f|^{p} \text{ for all } f \in L^{p}(\mathbb{R}).$$

We just showed that there is a step function in $S_{\mathbb{Q}}[-n, n]$ that approximates $f \in L^p[-n, n]$ and thus $F = \bigcup_{n \in \mathbb{Z}^+} F_n$ contains a function that approximates $f \in L^p(\mathbb{R})$.

Thus $L^p(\mathbb{R})$ is separable.

If E is a general measurable set, then the collection of restrictions to E of F is a countable dense subset of $L^{p}(E)$, and $L^{p}(E)$ is separable.

In fact, we just showed that step functions with finite support are dense in $L^p(E)$, where E is measurable and $1 \le p < \infty$.

Ex. Step functions with finite support are not dense in $L^{\infty}(E)$ if $m(E) = \infty$. For example, let's take $L^{\infty}(\mathbb{R})$.

f(x) = 1 is in $L^{\infty}(\mathbb{R})$, but if φ is any step function with finite support then $\|f - \varphi\|_{\infty} \ge 1$, Thus step functions with finite support are not dense in $L^{\infty}(\mathbb{R})$.

Let $C_c(E) = \{Continuous functions on E with finite support\}.$

Theorem: Let *E* be measurable and $1 \le p < \infty$, then $C_c(E)$ is dense in $L^p(E)$.

Proof: Since the set of step functions with finite support is dense in $L^p(E)$, one just needs to show that $C_c(E)$ is dense in the set of step functions with finite support.

See the theorem where we showed that $C_c(E)$ is dense in $L^1(\mathbb{R})$.