Completeness of L^p : The Riesz-Fischer Theorem

Def. A sequence $\{f_n\}$ in a normed linear space X is said to **converge to** $f \in X$ if lim $\lim_{n\to\infty}||f-f_n||=0.$ In that case we write $f_n\to f$ or $\lim_{n\to\infty}f_n=f$ in X.

Ex. Let $X = C[a, b]$, with $||f|| = \max_{b \in [a, b]}$ $x \in [a,b]$ $|f(x)|$. In this case $f_n\to f$ means $\lim\limits_{n\to\infty}$ max $\max_{x \in [a,b]} |f(x) - f_n(x)| = 0$ or for all $\epsilon > 0$ there exists N such that if $n \geq N$ then $||f - f_n|| = \max_{x \in [a,b]} |f(x) - f_n(x)| < \epsilon.$

This is precisely the definition of uniform convergence on $[a, b]$.

Ex. Let $X = L^{\infty}[a, b]$, with $||f||$ =Essential Supremum (f) . In this case $f_n \to f$ means $\lim_{n \to \infty} EssSup(f - f_n) = 0$ or for all $\epsilon > 0$ there exists N such that if $n \geq N$ then $||f - f_n|| = E$ ssential Sup $|f - f_n| < \epsilon$.

This is the same as saying that $f_n\to f$ in $L^\infty[a,b]$ if an only if $f_n\to f$ uniformly on the complement of a set of measure 0 in $[a, b]$.

Ex. Let
$$
X = L^p(E)
$$
 with $||f||_p = (\int_E |f|^p)^{\frac{1}{p}}$.

\n
$$
f_n \to f \text{ in } L^p(E) \text{ if and only if } 0 = \lim_{n \to \infty} ||f - f_n|| = \lim_{n \to \infty} (\int_E |f - f_n|^p)^{\frac{1}{p}}
$$
\nOr for all $\epsilon > 0$ there exists N such that if $n \geq N$ then $(\int_E |f - f_n|^p)^{\frac{1}{p}} < \epsilon$.

Def. A sequence $\{f_n\}$ is a normed linear space X is said to be **Cauchy** in X if for each $\epsilon > 0$ there is an N such that if $n, m \geq N$ then $||f_n - f_m|| < \epsilon$.

Def. A normed linear space X is said to be **complete** if every Cauchy sequence in X converges to a point (function) $f \in X$. A complete normed linear space is called a **Banach** space.

There can be more than one way to define a norm on a linear space X . For example, if $X = C[0,1]$ we could define:

$$
||f|| = \max_{x \in [0,1]} |f(x)| \text{ or } ||f|| = \int_0^1 |f|.
$$

Whether a normed linear space is complete depends on which norm you choose.

Ex. $C[0,1]$ is a Banach space with the norm $||f|| = \max$ $x \in [0,1]$ $|f(x)|$, but is not a Banach space with the norm $||f|| = \int_0^1 |f|$ \int_{0}^{1} |f|.

 One learns in an undergraduate analysis course that a uniformly convergent sequence of continuous functions converges to a continuous function. This says $C[0,1]$ is complete with $||f|| = \max$ $x \in [0,1]$ $|f(x)|$.

However, if we let
$$
= 1
$$
 if $0 \le x \le \frac{1}{2} - \frac{1}{2n}$
 $f_n(x) = -nx + \frac{n+1}{2}$ if $\frac{1}{2} - \frac{1}{2n} < x < \frac{1}{2} + \frac{1}{2n}$
 $= 0$ if $\frac{1}{2} + \frac{1}{2n} \le x \le 1$

Then $\{f_n\}$ is a Cauchy sequence with respect to $\|f\|=\int_0^1|f|$ $\int_{0}^{1} |f|$, but it does not converge to an element of $C[0,1]$. Hence $C[0,1]$ is not complete with respect to the norm $||f|| = \int_0^1 |f|$ \int_{0}^{1} |f|.

We will see that all of the $L^p(E)$ spaces, $1\leq p\leq\infty$ are Banach spaces with respect to their standard norms.

Prop. Let X be a normed linear space. Then every convergent sequence in X is a Cauchy sequence in X . Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof: Suppose $f_n \to f$ in X.

Then by the triangle inequality, for all m, n :

 $||f_n - f_m|| = ||(f_n - f) + (f - f_m)|| \le ||f_n - f|| + ||f - f_m||.$

Since $f_n \to f$, given any $\epsilon > 0$ there is a N such that if $n \geq N$ then

$$
\|f - f_n\| < \frac{\epsilon}{2}.
$$

Thus if $m, n \geq N$ then

$$
||f_n - f_m|| \le ||f_n - f|| + ||f - f_m|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

Hence $\{f_n\}$ is a Cauchy sequence.

Now let $\{f_n\}$ be a Cauchy sequence in X that has a convergent subsequence $\{f_{n_k}\}.$

Let $\epsilon > 0$.

 $\{f_n\}$ is Cauchy so there is a N' such that $m,n\geq N'\Longrightarrow \|f_n-f_m\|<\frac{\epsilon}{2}$ $\frac{c}{2}$.

Since $\{f_{n_k}\}$ converges to $f\in X$ we can choose a k such that $n_k\ge N''$ then: $\left\|f_{n_k} - f\right\| < \frac{\epsilon}{2}$ $\frac{c}{2}$.

Choose
$$
N = \max (N', N'')
$$
 then
\n
$$
||f - f_n|| = ||(f - f_{n_k}) + (f_{n_k} - f_n)||
$$
\n
$$
\le ||(f - f_{n_k})|| + ||(f_{n_k} - f_n)|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

Thus $f_n \to f$ in X.

Def. Let X be a normed linear space. A sequence $\{f_n\}$ is said to be **rapidly Cauchy** if there is a convergent series of positive numbers $\sum_{k=1}^{\infty}\epsilon_{k}$ $\sum_{k=1}^{\infty} \epsilon_k$ such that

$$
\|f_{k+1} - f_k\| \le \epsilon_k^2 \text{ for all } k.
$$

Ex.
$$
\{\frac{1}{n^2}\}
$$
 is rapidly Cauchy in R, but $\{\frac{1}{n}\}$ is not rapidly Cauchy in R.

For the sequence
$$
\left\{\frac{1}{n^2}\right\}
$$
:

$$
\left|\frac{1}{(k+1)^2} - \frac{1}{k^2}\right| = \frac{2k+1}{k^2(k+1)^2}.
$$

To be rapidly Cauchy we need: $\sum_{k=1}^{\infty} \sqrt{\frac{2k+1}{k^2(k+1)}}$ $k^2(k+1)^2$ $\sum_{k=1}^{\infty} \sqrt{\frac{2k+1}{k^2(k+1)^2}} = \sum_{k=1}^{\infty} \frac{\sqrt{2k+1}}{k(k+1)}$ $k(k+1)$ ∞ $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ to converge.

This does converge through the limit comparison test with the series $\sum_{k=1}^{\infty} \frac{1}{2}$ \boldsymbol{k} 3 2 $\frac{\infty}{k=1}$ $\frac{1}{\frac{3}{2}}$ < ∞.

So $\left\{\frac{1}{n}\right\}$ $\frac{1}{n^2}$ } is rapidly Cauchy in $\mathbb{R}.$

For the sequence
$$
\left\{\frac{1}{n}\right\}
$$
:

$$
\left|\frac{1}{k+1} - \frac{1}{k}\right| = \frac{1}{k(k+1)}.
$$

To be rapidly Cauchy we need: $\sum_{k=1}^{\infty}\frac{1}{\sqrt{1-(k+1)^2}}$ $\sqrt{k(k+1)}$ ∞ $\frac{1}{k=1}$ $\frac{1}{\sqrt{k(k+1)}}$ to converge.

But this series diverges by the limit comparison test with $\sum_{k=1}^{\infty} \frac{1}{k}$ \boldsymbol{k} $\sum_{k=1}^{\infty} \frac{1}{k} = \infty.$

Thus $\{\frac{1}{n}\}$ $\frac{1}{n}$ } is not rapidly Cauchy in $\mathbb{R}.$ Notice that if $\{f_n\}$ is a sequence in X and we have a sequence of nonnegative numbers ${a_k}$ with

$$
||f_{k+1} - f_k|| \le a_k \text{ for all } k \text{ then}
$$

$$
f_{n+k} - f_k = \sum_{j=n}^{n+k-1} (f_{j+1} - f_j) \text{ for all } n, k.
$$

So

$$
||f_{n+k} - f_k|| = ||\sum_{j=n}^{n+k-1} (f_{j+1} - f_j)|| \le \sum_{j=n}^{n+k-1} ||f_{j+1} - f_j||
$$

$$
\le \sum_{j=1}^{\infty} a_j \text{ for all } n, k.
$$

Prop. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence.

Proof: Let $\{f_n\}$ be rapidly Cauchy and $\sum_{k=1}^{\infty} \epsilon_k < \infty$ for which $||f_{k+1} - f_k|| \leq \epsilon_k^2$ for all k.

Thus:

$$
||f_{n+k} - f_n|| = ||(f_{n+1} - f_n) + (f_{n+2} - f_{n+1}) + \dots + (f_{n+k} - f_{n+k-1})||
$$

\n
$$
\le ||f_{n+1} - f_n|| + \dots + ||f_{n+k} - f_{n+k-1}|| \le \sum_{j=n}^{\infty} \epsilon_j^2 \text{ for all } n, k.
$$

Since $\sum_{k=1}^\infty \epsilon_k$ $_{k=1}^{\infty}$ ϵ_{k} converges, $\sum_{k=1}^{\infty} \epsilon_{k}^{2}$ $_{k=1}^{\infty}$ ϵ_{k} converges (by the comparison test).

Thus given $\epsilon > 0$ there exists an N such that $n \geq N$ implies

$$
||f_{n+k} - f_n|| \leq \left| \sum_{j=n}^{\infty} \epsilon_j^2 \right| < \epsilon.
$$

Thus $\{f_n\}$ is Cauchy.

Now assume $\{f_n\}$ is Cauchy.

We can always find an increasing sequence of $\{n_k\}$ such that

$$
\|f_{n_{k+1}} - f_{n_k}\| < (\frac{1}{2})^k \quad \text{for all } k.
$$

Thus $\{f_{n_k}\}$ is rapidly Cauchy because $\sum_{k=1}^{\infty}(\frac{1}{\sqrt{2}})$ $\sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^k$ $\sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^k$ converges because it's a geometric series with $r < 1$.

Theorem: Let E be a measurable set and $1 \leq p \leq \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the $L^p(E)$ norm and pointwise a.e. on E to a function in $L^p(E).$

Proof at end of this section.

The Riesz-Fischer Theorem: Let E be a measurable set and $1 \leq p \leq \infty$. Then $L^p(E)$ is a Banach space. Moreover if $f_n\to f$ in $L^p(E)$, a subsequence of $\, \{f_n\} \,$ converges pointwise a.e. on E to f .

Proof: Let $\{f_n\}$ be a Cauchy sequence in $L^p(E).$ Thus there is a subsequence $\{\mathnormal{f}_{n_{k}}\}$ that is rapidly Cauchy.

The previous theorem says that $f_{n_k}\to f\;$ in $L^p(E)$ and converges to f a.e. on $E.$ Since a Cauchy sequence converges if it has a convergent subsequence, $f_n \to f$ in $L^p(E).$

Ex. Pointwise convergence does not guarantee convergence in $L^p(E)$.

Let
$$
f_n(x) = n
$$
 if $0 < x < \frac{1}{n}$ $= 0$ if $\frac{1}{n} \leq x \leq 1$.

Then $f_n\in L^p(0,1)$ for all n and $f_n(x)\rightarrow f(x)=0$ pointwise on $(0,1)$ but $\{f_n\}$ is not a Cauchy sequence in $L^p(0,1)$ and hence does not converge in $L^p(0,1).$

For example in $L^1(0,1)$:

$$
||f_n - f_m||_1 = \int_0^{\frac{1}{m}} (m - n) + \int_{\frac{1}{m}}^{\frac{1}{n}} n = 2 - \frac{2n}{m}; \text{ for } m > n
$$

Which doesn't go to 0 as $n, m \rightarrow \infty$.

Ex. Convergence in $L^p(E)$, $1 \leq p < \infty$, does not guarantee pointwise convergence a.e. on E .

Let
$$
f_1 = \chi_{[0,1]},
$$
 $f_2 = \chi_{[0,\frac{1}{2}]},$ $f_3 = \chi_{[\frac{1}{2},1]},$ $f_4 = \chi_{[0,\frac{1}{4}]},$
 $f_5 = \chi_{[\frac{1}{4},\frac{1}{2}]},$ $f_6 = \chi_{[\frac{1}{2},\frac{3}{4}]},$ $f_7 = \chi_{[\frac{3}{4},1]},$ $f_8 = \chi_{[0,\frac{1}{8}]},$...

 $f_n \rightarrow 0$ in $L^p(E)$ but $\{f_n(x)\}$ does not converge pointwise for any $x \in [0,1].$

However, we do have the following theorem:

Theorem: Let E be a measurable set and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to $f\in L^p(E)$ then $\ f_n\to f$ in $L^p(E)$ if and only if $\overline{\lim}$ $\lim_{n\to\infty} \int_E |f_n|^p = \int_E |f|^p$ $\int_E |f_n|^p = \int_E |f|^p.$

Proof: By excising a set of measure 0 we can assume $f_n \to f$ pointwise on E .

From Minkowski's inequality (i.e. triangle inequality for $L^p(E)$)

$$
||f_n||_p \le ||f_n - f||_p + ||f||_p
$$

So $\|f_n\|_p - \|f\|_p \le \|f_n - f\|_p.$

So if $f_n \to f$ in $L^p(E)$ then $\lim_{n \to \infty}$ $\lim_{n\to\infty} \int_E |f_n|^p = \int_E |f|^p$ $\int_E |f_n|^p = \int_E |f|^p.$ Now let's assume lim $\lim_{n\to\infty} \int_E |f_n|^p = \int_E |f|^p$ $\int_E |f_n|^p = \int_E |f|^p.$

Define $\varphi(t) = |t|^p$ for all t. Since $\varphi''(t) \ge 0$ for $t \ne 0$, φ is convex. Thus $\varphi(\frac{a+b}{2})$ $\frac{a+b}{2}$) $\leq \frac{\varphi(a)+\varphi(b)}{2}$ $\frac{1}{2}$ for all a, b .

Thus we have:

$$
0 \le \frac{|a|^p + |b|^p}{2} - \left|\frac{a-b}{2}\right|^p \quad \text{for all } a, b.
$$

Define
$$
h_n(x) = \frac{|f_n(x)|^p + |f(x)|^p}{2} - \left| \frac{f_n(x) - f(x)}{2} \right|^p
$$
 for all $x \in E$.

Since $f_n \to f$ pointwise on $E;~~h_n \to |f|^p$ pointwise on E and $h_n(x) \geq 0.$

By Fatou's lemma: $\int_E |f|^p \leq liminf \int_E h_n$

$$
= \liminf \int_{E} \left(\frac{|f_{n}(x)|^{p} + |f(x)|^{p}}{2} - \left| \frac{f_{n}(x) - f(x)}{2} \right|^{p} \right)
$$

$$
= \int_{E} |f|^{p} - \limsup \int_{E} \left| \frac{f_{n}(x) - f(x)}{2} \right|^{p}
$$

since lim $\lim_{n\to\infty} \int_E |f_n|^p = \int_E |f|^p$ $\int_E |f_n|^p = \int_E |f|^p.$

Thus
$$
\limsup \int_E \left| \frac{f_n(x) - f(x)}{2} \right|^p \le 0.
$$

So
$$
\lim_{n \to \infty} \int_E |f_n - f|^p = 0
$$
 and $f_n \to f$ in $L^p(E)$.

Notice that in our example of $f_n\to f$ pointwise, but not in $L^p(0,1)$,

$$
\lim_{n \to \infty} \int_0^1 |f_n|^p \neq \int_0^1 |f|^p.
$$

The Borel-Cantelli Lemma says that if $\{E_k\}_1^\infty$ is a countable collection of measurable sets with $\sum_{k=1}^\infty m(E_k) < \infty$ then almost all $x \in \mathbb{R}$ belong to at most finitely many $E's$.

Thus there is a set E_0 with $m(E_0) = 0$ and if $x \in E {\sim} E_0$ then there is some $K(x)$ such that if $k \geq K(x)$ then

$$
|f_{k+1}(x) - f_k(x)| \leq \epsilon_k.
$$

Let $x \in E \sim E_0$. Then we have:

$$
|f_{n+k}(x) - f_n(x)| \le \sum_{j=n}^{n+k-1} |f_{j+1}(x) - f_j(x)|
$$

$$
\le \sum_{j=n}^{\infty} \epsilon_j \quad \text{for all } n \ge K(x) \text{ and all } k.
$$

Since $\sum_{j=1}^{\infty} \epsilon_j$ $\int\limits_{j=1}^{\infty}\epsilon_j$ converges, the sequence of real numbers $\{f_k(x)\}$ is Cauchy. Since the real numbers are complete: $f_k(x) \to f(x)$, a real number. Define $f(x) = 0$ on E_0 . Thus f is defined on E.

Since
$$
||f_{k+1} - f_k||_p \le \epsilon_k^2
$$
 for all k
\n $||f_{n+k} - f_k||_p \le \sum_{j=n}^{\infty} \epsilon_j^2$ or equivalently:
\n $\int_E |f_{n+k} - f_n|^p \le (\sum_{j=n}^{\infty} \epsilon_j^2)^p$ for all n, k .

Since $f_n \to f$ pointwise a.e. on E , take the limit as $k \to \infty$. By Fatou's lemma we get:

$$
\int_E |f - f_n|^p \le \liminf \int_E |f_{n+k} - f_n|^p \le (\sum_{j=n}^{\infty} \epsilon_j^2)^p \quad \text{for all } n.
$$

Since $\sum_{k=1}^\infty \epsilon_k$ $k=1$ 2 converges we have $\,\mathrm{lim}$ $\lim_{n\to\infty}\sum_{j=n}^{\infty}\epsilon_n$ $\sum_{j=n}^{\infty} \epsilon_n^2 = 0.$

Thus we have:

$$
\lim_{n \to \infty} \int_E |f - f_n|^p = 0 \text{ and } f_n \to f \text{ in } L^p(E).
$$

Theorem: Let E be a measurable set and $1 \leq p \leq \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the $L^p(E)$ norm and pointwise a.e. on E to a function in $L^p(E).$

Proof: Assume $1 \leq p < \infty$ $(p = \infty)$ is left as an exercise).

Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E).$

By possibly excising a set of measure 0 we can assume that the $f_n{'}s$ are real valued.

Choose $\sum_{k=1}^{\infty} \epsilon_k$ $\sum_{k=1}^{\infty} \epsilon_k$ such that: $||f_{k+1} - f_k||_p \leq \epsilon_k^2$ for all k.

Thus $\int_E |f_{k+1} - f_k|^p \le \epsilon_k^{2p}$ $\int_E |f_{k+1} - f_k|^p \leq \epsilon_k^{2p}$ for all k. Fix $k \in \mathbb{Z}^+$. $|f_{k+1}(x) - f_k(x)| \ge \epsilon_k$ if and only if $|f_{k+1}(x) - f_k(x)|^p \ge \epsilon_k^p$.

By Chebychev's inequality:

$$
m\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \epsilon_k\} = m\{x \in E \mid |f_{k+1}(x) - f_k(x)|^p \ge \epsilon_k^p\}
$$

$$
\le \frac{1}{\epsilon_k^p} \int_E |f_{k+1}(x) - f_k(x)|^p
$$

$$
\le \epsilon_k^p.
$$

Since $p \geq 1$, $\sum_{1}^{\infty} \epsilon_k^p$ $\int_{1}^{\infty} \epsilon_k^p$ converges.

Let $E_k = \{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \epsilon_k\}.$ Since $\sum_1^{\infty} \epsilon_k^p$ $\frac{\infty}{1} \epsilon^p_k$ converges, $\ \sum_{k=1}^{\infty} m(E_k)$ $\sum_{k=1}^{\infty} m(E_k)$ converges.