Completeness of L^p : The Riesz-Fischer Theorem- HW Problems

1. Let $f_n(x) = \frac{n}{1+n\sqrt{x}}$ for $0 \le x \le 1$. a. Show $f_n \in L^2(0,1)$ and thus also in $L^1(0,1)$ (since $L^1(0,1) \supseteq L^2(0,1)$). b. Find the pointwise limit f of the sequence $\{f_n\}$ on [0,1]. c. Is $f \in L^2(0,1)$? Is $f \in L^1(0,1)$? Prove your answer. d. Determine if $f_n \to f$ in $L^1(0,1)$ or in $L^2(0,1)$. e. Is $\{f_n\}$ a Cauchy sequence in $L^1(0,1)$? $L^2(0,1)$? Why?

2. Define a norm on $L^1[0,1]$ by $||f|| = \int_0^1 x^2 |f|$. Prove that if a sequence $f_n \in L^1[0,1]$ converges with the standard norm on $L^1[0,1]$ then it also converges with the norm $||f|| = \int_0^1 x^2 |f|$.

3. Let X be a normed linear space. Suppose that $f_n \to f$ in X and $g_n \to g$ in X. Prove for any real numbers a, b that $af_n + bg_n \to af + bg$ in X.

4. Consinder the space of all polynomials on [a, b] with the norm $||f|| = \max_{a \le x \le b} |f|$. Is this a Banach space?

5. Let $\{f_n\}$ be a sequence of measurable functions with $f_n \to f$ pointwise a.e. on E. For $1 \le p < \infty$ suppose there is a function $g \in L^p(E)$ such that for all n, $|f_n| \le g$ a.e. on E. Prove that $f_n \to f$ in $L^p(E)$. 6. Suppose that $m(E) < \infty$ and $1 \le p_1 < p_2 \le \infty$. Show that if $f_n \to f$ in $L^{p_2}(E)$ then $f_n \to f$ in $L^{p_1}(E)$.

7. Suppose that $\{f_n\}$ is a sequence in $L^{\infty}(E)$ and $\sum_{j=1}^{\infty} a_j < \infty$, with $a_j > 0$ for all j. In addition: $\|f_{j+1} - f_j\|_{\infty} \le a_j$ for all j. Prove that there is a set $E_0 \subseteq E$ with $m(E_0) = 0$ such that:

 $|f_{n+j} - f_n| \le ||f_{n+j} - f_n||_{\infty} \le \sum_{i=n}^{\infty} a_i$ for all j, n and all $x \in E \sim E_0$. Thus there is a function $f \in L^{\infty}(E)$ such that $f_n \to f$ uniformly on $E \sim E_0$.

8. Use the result from problem #7 to show that $L^{\infty}(E)$ is a Banach space.