L^p Spaces

Def: For E a measurable set, $1 < p < \infty$, and a function $f \in L^p(E)$, define:

$$
\|f\|_p = (\int_E |f|^p)^{\frac{1}{p}}.
$$

The functional $\left\Vert \cdot\right\Vert _{p}$ is a norm on $L^{p}(E).$

It's clear that $\|\lambda f\|_p = |\lambda| \|f\|_p$, and $\|f\|_p \ge 0$ with $\|f\|_p = 0$ if, and only if, $f = 0$ a.e. on E.

What is less obvious is the triangle inequality:

$$
||f + g||_p \le ||f||_p + ||g||_p.
$$

This is called the **Minkowski inequality**.

Def. The **conjugate** of a number $p \in (1, \infty)$ is the number $q = \frac{p}{n}$ $\frac{P}{p-1}$, which is the unique $q \in (1, \infty)$ for which:

$$
\frac{1}{p} + \frac{1}{q} = 1.
$$

The conjugate of 1 is defined to be ∞ , and the conjugate of ∞ is defined to be 1.

Young's inequality: for $1 < p < \infty$, q the conjugate of p, and any two positive numbers a, b ,

$$
ab \leq \frac{a^p}{p} + \frac{b^p}{q} \, .
$$

Proof: $f(x) = e^x$ has a positive second derivative and therefore is convex, i.e. for any $\lambda \in [0, 1]$, and any numbers u, v .

In particular, setting $\lambda = \frac{1}{n}$ $\frac{1}{p}$, 1 – $\lambda = \frac{1}{q}$ $\frac{1}{q}$, $u = \ln a^p$, $v = \ln b^q$ $e^{(\frac{1}{p})}$ $\frac{1}{p}$ ln $a^p + \frac{1}{q}$ $\frac{1}{q}$ ln b^q) ≤ 1 \overline{p} $e^{(\ln a^p)} + \frac{1}{n}$ \overline{q} $e^{(\ln b^q)}$ $ab \leq$ 1 \overline{p} $a^p +$ 1 \overline{q} b^q .

Def. $sgn(f) = 1$ if $f(x) ≥ 0$ and -1 if $f(x) < 0$.

Theorem: Let E be a measurable set, $1 \leq p < \infty$, and q the conjugate of p. If $f \in L^p(E)$ and $g \in L^q(E)$, then $f \cdot g$ is integrable over E and,

$$
\int_E |fg| \leq ||f||_p ||g||_q
$$
 (Holder's inequality)

Moreover, if $f \neq 0$, the function:

$$
f^* = ||f||_p^{1-p} \cdot sgn(f) \cdot |f|^{p-1} \in L^q(E)
$$

and $\int_E f \cdot f^* = ||f||_p$ and $||f^*||_q = 1$.

Proof: First let $p = 1$ then $g \in L^{\infty}(E)$.

So, $||g||_{\infty}$ = essential upper bound of g on E .

$$
\int_{E} |fg| \le ||g||_{\infty} \int_{E} |f| = ||g||_{\infty} ||f||_{1}.
$$

If $p = 1$, $f^* = sgn(f)$ so $f \cdot f^* = |f|$ and

$$
\int_{E} f \cdot f^* = \int_{E} |f| = ||f||_{1}
$$
 and $||f^*||_{\infty} = 1$.

If $p > 1$, assume $f \not\equiv 0$, $q \not\equiv 0$ else there is nothing to prove.

Notice that if Holder's inequality is true for f replaced by \int $\|f\|_p$ and g replaced by \overline{g} $\|g\|_q$ then it's true for f and g as well since: \int_F | $\frac{f}{\ln f}$ E^{-1} || f || p \overline{g} $\|g\|_q$ $|\leq \left|\frac{f}{$ $\|f\|_p$ ‖ \overline{p} $\frac{g}{\ln a}$ $\|g\|_q$ ‖ \overline{q} $= 1,$ If and only if $\int_E\|fg\|\leq\|f\|_p\|g\|_q.$

Thus we can assume $||f||_p = ||g||_q = 1$, that is:

$$
\int_E |f|^p = 1
$$
 and
$$
\int_E |g|^q = 1.
$$

In which case Holder's inequality becomes: $\int_E|fg|\leq 1.$

Since $|f|^p$ and $|g|^q$ are integrable over E , f and g are finite a.e. on E . By Young's inequality we have:

$$
|f \cdot g| = |f||g| \le \frac{|f|^p}{p} + \frac{|g|^q}{q}
$$
 a.e. on E.

By the integral comparison test fg is integrable over E and,

$$
\int_{E} |fg| \leq \frac{1}{p} \int_{E} |f|^{p} + \frac{1}{q} \int_{E} |g|^{q} = \frac{1}{p} + \frac{1}{q} = 1.
$$

Thus Holder's inequality is proved.

Now notice that since $f^* = \|f\|_p^{1-p} sgn(f) |f|^{p-1}$, $f\cdot f^* = \|f\|_p^{1-p} |f|^p$ a.e. on E.

So $\int_E |f \cdot f^*| = ||f||_p^{1-p} \int_E |f|^p = ||f||_p^{1-p} ||f||^p = ||f||_p$.

And since $q(p-1) = \frac{p}{p}$ $\frac{p}{p-1}(p-1) = p,$ $||f^*||_q = (\int_E |f^*|^q)$ E $|f^*|^{q}$ 1 $\frac{1}{q} = (\int_E ||f||_p^{(1-p)q} |f|^{(p-1)q})$ 1 \overline{q} $= (\|f\|_p^{(1-p)q})$ 1 $\overline{q}(\int_E |f|^{(p-1)q})$ 1 \overline{q} $= (\|f\|_p^{-p})$ 1 $\overline{q}(\int_E |f|^p)$ 1 \overline{q} $= (\int_E |f|^p)$ $-\frac{1}{a}$ ^q $(\int_F |f|^p)$ $\int_E |f|^p$ 1 $\overline{q} = 1.$

If $f \in L^p(E)$, $f \not\equiv 0$, we call $f^* = ||f||_p^{1-p} sgn(f)|f|^{p-1}$ the **conjugate function of .**

The Minkowski inequality: Let *E* be a measurable set and $1 \leq p \leq \infty$.

If $f, g \in L^p(E)$, then $f + g \in L^p(E)$ and:

$$
||f + g||_p \le ||f||_p + ||g||_p.
$$

Proof: We have already seen this is true for $p = 1$ and $p = \infty$.

Assume $1 < p < \infty$.

Since
$$
|f(x) + g(x)|^p \leq 2^p[|f(x)|^p + |g(x)|^p]
$$
 we know $f + g \in L^p(E)$.

If $f + g \not\equiv 0$, then by Holder's inequality:

$$
||f + g||_p = \int_E (f + g)(f + g)^*
$$

= $\int_E f(f + g)^* + \int_E (g(f + g)^*)$
 $\leq ||f||_p ||(f + g)^*||_q + ||g||_p ||(f + g)^*||_q$
But $||(f + g)^*||_q = 1$ so
= $||f||_p + ||g||_q$.

The special case of Holder's inequality where $p = q = 2$ is called the **Cauchy-Schwarz inequality**.

Cauchy-Schwarz inequality: Let E be measurable and $f,g\in L^2(E)$, then $f\cdot g\in L^1(E)$ and

$$
\int_E |f \cdot g| \le \left(\sqrt{\int_E f^2}\right) \left(\sqrt{\int_E g^2}\right).
$$

This is also the analogue of the Cauchy-Schwarz inequality for vectors in \mathbb{R}^n , i.e. \vec{v} , $\vec{w} \in \mathbb{R}^n$: $|\vec{v} \cdot \vec{w}| \le ||\vec{v}|| ||\vec{w}||$.

Ex. Prove the if $f \in L^2[a, b]$, then $\int_a^b |f| \leq (\sqrt{b-a})(\int_a^b |f|^2)$ α 1 $b_{\text{left}} \geq \sqrt{b_{\text{right}}}$ $\sqrt{b_{\text{left}}}$ $\int_{a}^{b} |f| \leq (\sqrt{b}-a)(\int_{a}^{b} |f|^{2})^{2}$ and thus $L^2[a, b] \subseteq L^1[a, b]$.

By the Cauchy-Schwarz inequality we have:

$$
\int_a^b |1 \cdot f| \le \left(\int_a^b 1\right)^{\frac{1}{2}} \left(\int_a^b |f|^2\right)^{\frac{1}{2}} = \left(\sqrt{b-a}\right) \left(\int_a^b |f|^2\right)^{\frac{1}{2}}.
$$

Although $L^2[a, b] \subseteq L^1[a, b]$, $L^1[a, b] \subsetneq L^2[a, b]$. For example, $f(x) = \frac{1}{x^2}$ $\frac{1}{\sqrt{x}}\in L^1[0,1]$, but $f(x)=\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{x}} \notin L^2[0,1].$ Corollary: Let E be a measurable set and $1 < p < \infty$. Suppose F is a family of functions in $L^p(E)$ that is bounded in $L^p(E)$, i.e. there is a constant $M \geq 0$ such that:

$$
||f||_p \le M \text{ for all } f \in F.
$$

Then the family F is uniformly integrable over E .

Proof: Let $\epsilon > 0$.

We must show there exists a $\delta > 0$ such that for any $f \in F$, if $A \subseteq E$ is measurable and $m(A) < \delta$ then $\int_A |f| < \epsilon$.

Let $A \subseteq E$ be measurable and $m(A) < \infty$.

Let $g(x) = 1$ for $x \in A$. Then $g \in L^q(A)$.

Since $f \in L^p(E)$, it's restriction to A is in $L^p(A).$

By Holder's inequality:

$$
\int_A |f| = \int_A |f| g \le (\int_A |f|^p)^{\frac{1}{p}} \cdot (\int_A |g|^q)^{\frac{1}{q}}.
$$

 $\frac{c}{M}$

But for all $f \in F$:

$$
(\int_A |f|^p)^{\frac{1}{p}} \le \left(\int_E |f|^p\right)^{\frac{1}{p}} \le M \text{ and } (\int_A |g|^q)^{\frac{1}{q}} = (m(A))^{\frac{1}{q}}.
$$

So,
$$
\int_{A} |f| \leq M(m(A))^{\frac{1}{q}}
$$
.

\nLet $\delta = \left(\frac{\epsilon}{M}\right)^{q}$.

\nThen $m(A) < \left(\frac{\epsilon}{M}\right)^{q}$ and $\int_{A} |f| < M \cdot \left(\left(\frac{\epsilon}{M}\right)^{q}\right)^{\frac{1}{q}} = \epsilon$.

Corollary: Let E be a measurable set of finite measure and

$$
1 \le p_1 < p_2 \le \infty.
$$
\nThen, $L^{p_2}(E) \subseteq L^{p_1}(E)$

\nand $||f||_{p_1} \le c ||f||_{p_2}$ for all $f \in L^{p_2}(E)$

\nwhere $c = [m(E)]^{\left(\frac{p_2 - p_1}{p_2 p_1}\right)}$ if $p_2 < \infty$ and

\n
$$
c = [m(E)]^{\left(\frac{1}{p_1}\right)}
$$
 if $p_2 = \infty$.

Proof: Assume $p_2 < \infty$.

Define
$$
p = \frac{p_2}{p_1} > 1
$$
 and let q be the conjugate of p.
Let $f \in L^{p_2}(E)$. So $\int_E |f|^{p_2} < \infty$.

Notice that
$$
f^{p_1} \in L^p(E)
$$
 since $\int_E |f^{p_1}|^p = \int_E |f|^{p_2} < \infty$.
And $g = \chi_E$ belongs to $L^q(E)$ because $m(E) < \infty$.

By the Holder inequality:

$$
\int_{E} |f|^{p_1} = \int_{E} |f|^{p_1} \cdot g \le ||f^{p_1}||_{p} ||g||_{q}
$$

=
$$
\left(\int_{E} |f^{p_1}|^{\frac{p_2}{p_1}} \right)^{\frac{p_1}{p_2}} \left(\int_{E} |g|^{q} \right)^{\frac{1}{q}}
$$

=
$$
[\left(\int_{E} |f|^{p_2} \right)^{\frac{1}{p_2}}]^{p_1} (m(E))^{\frac{1}{q}}
$$

=
$$
||f||_{p_2}^{p_1} (m(E))^{\frac{1}{q}}
$$

So:

\n
$$
\|f\|_{p_1} = \left(\int_E |f|^{p_1}\right)^{\frac{1}{p_1}} \le \|f\|_{p_2} (m(E))^{\frac{1}{q}(\frac{1}{p_1})}
$$
\n
$$
p = \frac{p_2}{p_1}, \qquad \text{and } \frac{1}{p} + \frac{1}{q} = 1
$$
\nso

\n
$$
\frac{1}{p} = 1 - \frac{p_1}{p_2} \qquad \text{and } \frac{1}{q} \cdot \frac{1}{p_1} = \frac{p_2 - p_1}{p_1 p_2}
$$
\n
$$
\|f\|_{p_1} \le \|f\|_{p_2} (m(E))^{\left(\frac{p_2 - p_1}{p_1 p_2}\right)}.
$$

If
$$
p_2 = \infty
$$
 and $f \in L^{\infty}(E)$ then
\n
$$
||f||_{p_1} = (\int_E |f|^{p_1})^{\frac{1}{p_1}} \leq [(||f||_{\infty})^{p_1} \int_E 1]^{\frac{1}{p_1}}
$$
\n
$$
= ||f||_{\infty} (m(E))^{\frac{1}{p_1}}.
$$

Ex. Show that If $E = [0,1]$ and $1 \leq p_1 < p_2 \leq \infty$, $L^{p_2}(E)$ is a proper subspace of $L^{p_1}(E).$

$$
m(E) < \infty \text{ so } L^{p_2}(E) \subseteq L^{p_1}(E).
$$
\nLet $f(x) = x^{\alpha}, 0 < x \le 1$, where $-\frac{1}{p_1} < \alpha \le -\frac{1}{p_2}$,

\nthen $f(x) \in L^{p_1}(E) \sim L^{p_2}(E)$.

\nFor example, if $p_1 = 1$, $p_2 = 2$; $-1 < \alpha \le -\frac{1}{2}$

\nthen $f(x) = x^{\alpha}$ is $L^1((0,1])$ since $\int_0^1 x^{\alpha} = \frac{1}{1+\alpha}$, but $\int_0^1 x^{2\alpha} = \infty$.

1

Ex. In general, if $m(E) = \infty$ there are no inclusion relations among $L^p(E)$ spaces. For example, if $E = (0, \infty)$ and $f(x) = \frac{x^{-\frac{1}{2}}}{1 + \ln x}$ 2 $1+|\ln x|$ $f \in L^p(E)$ if, and only if, $p=2$.