L^p Spaces

Def: For *E* a measurable set, $1 , and a function <math>f \in L^p(E)$, define:

$$\|f\|_{p} = (\int_{E} |f|^{p})^{\frac{1}{p}}$$

The functional $\|\cdot\|_p$ is a norm on $L^p(E)$.

It's clear that $\|\lambda f\|_p = |\lambda| \|f\|_p$, and $\|f\|_p \ge 0$ with $\|f\|_p = 0$ if, and only if, f = 0 a.e. on E.

What is less obvious is the triangle inequality:

$$||f + g||_p \le ||f||_p + ||g||_p.$$

This is called the **Minkowski inequality**.

Def. The **conjugate** of a number $p \in (1, \infty)$ is the number $q = \frac{p}{p-1}$, which is the unique $q \in (1, \infty)$ for which:

$$\frac{1}{p} + \frac{1}{q} = 1.$$

The conjugate of 1 is defined to be ∞ , and the conjugate of ∞ is defined to be 1.

Young's inequality: for 1 , <math>q the conjugate of p, and any two positive numbers a, b,

$$ab \leq \frac{a^p}{p} + \frac{b^p}{q} \, .$$

Proof: $f(x) = e^x$ has a positive second derivative and therefore is convex, i.e. for any $\lambda \in [0, 1]$, and any numbers u, v.

In particular, setting $\lambda = \frac{1}{p}$, $1 - \lambda = \frac{1}{q}$, $u = \ln a^p$, $v = \ln b^q$ $e^{\left(\frac{1}{p}\ln a^p + \frac{1}{q}\ln b^q\right)} \le \frac{1}{p}e^{\left(\ln a^p\right)} + \frac{1}{q}e^{\left(\ln b^q\right)}$ $ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$.

Def. sgn(f) = 1 if $f(x) \ge 0$ and -1 if f(x) < 0.

Theorem: Let E be a measurable set, $1 \le p < \infty$, and q the conjugate of p. If $f \in L^p(E)$ and $g \in L^q(E)$, then $f \cdot g$ is integrable over E and,

$$\int_E \|fg\| \le \|f\|_p \|g\|_q$$
 (Holder's inequality)

Moreover, if $f \neq 0$, the function:

$$f^* = \|f\|_p^{1-p} \cdot sgn(f) \cdot |f|^{p-1} \in L^q(E)$$

and
$$\int_E f \cdot f^* = \|f\|_p \text{ and } \|f^*\|_q = 1.$$

Proof: First let p = 1 then $g \in L^{\infty}(E)$.

So, $||g||_{\infty}$ = essential upper bound of g on E.

$$\begin{split} \int_{E} |fg| &\leq \|g\|_{\infty} \int_{E} |f| = \|g\|_{\infty} \|f\|_{1}. \\ \text{If } p &= 1 \,, \, f^{*} = sgn(f) \text{ so } f \cdot f^{*} = |f| \text{ and} \\ \int_{E} |f \cdot f^{*} = \int_{E} |f| = \|f\|_{1} \text{ and } \|f^{*}\|_{\infty} = 1. \end{split}$$

If p > 1, assume $f \not\equiv 0$, $g \not\equiv 0$ else there is nothing to prove.

Notice that if Holder's inequality is true for f replaced by $\frac{f}{\|f\|_p}$ and g replaced by $\frac{g}{\|g\|_q}$ then it's true for f and g as well since: $\int_E \left| \frac{f}{\|f\|_p} \frac{g}{\|g\|_q} \right| \le \left\| \frac{f}{\|f\|_p} \right\|_p \left\| \frac{g}{\|g\|_q} \right\|_q = 1,$ If and only if $\int_E |fg| \le \|f\|_p \|g\|_q.$

Thus we can assume $\|f\|_p = \|g\|_q = 1$, that is:

$$\int_E |f|^p = 1$$
 and $\int_E |g|^q = 1$.

In which case Holder's inequality becomes: $\int_E |fg| \le 1$.

Since $|f|^p$ and $|g|^q$ are integrable over E, f and g are finite a.e. on E. By Young's inequality we have:

$$|f \cdot g| = |f||g| \le \frac{|f|^p}{p} + \frac{|g|^q}{q}$$
 a.e. on E

By the integral comparison test fg is integrable over E and,

$$\int_{E} |fg| \leq \frac{1}{p} \int_{E} |f|^{p} + \frac{1}{q} \int_{E} |g|^{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Thus Holder's inequality is proved.

Now notice that since $f^* = \|f\|_p^{1-p} sgn(f) |f|^{p-1}$, $f \cdot f^* = \|f\|_p^{1-p} |f|^p$ a.e. on *E*.

So
$$\int_{E} |f \cdot f^{*}| = ||f||_{p}^{1-p} \int_{E} |f|^{p} = ||f||_{p}^{1-p} ||f||^{p} = ||f||_{p}.$$

And since $q(p-1) = \frac{p}{p-1}(p-1) = p$, $||f^*||_q = (\int_E |f^*|^q)^{\frac{1}{q}} = (\int_E ||f||_p^{(1-p)q} |f|^{(p-1)q})^{\frac{1}{q}}$ $= (||f||_p^{(1-p)q})^{\frac{1}{q}} (\int_E |f|^{(p-1)q})^{\frac{1}{q}}$ $= (||f||_p^{-p})^{\frac{1}{q}} (\int_E |f|^p)^{\frac{1}{q}}$ $= (\int_E |f|^p)^{-\frac{1}{q}} (\int_E |f|^p)^{\frac{1}{q}} = 1.$

If $f \in L^p(E)$, $f \not\equiv 0$, we call $f^* = ||f||_p^{1-p} sgn(f)|f|^{p-1}$ the conjugate function of f.

The Minkowski inequality: Let *E* be a measurable set and $1 \le p \le \infty$.

If $f, g \in L^p(E)$, then $f + g \in L^p(E)$ and:

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Proof: We have already seen this is true for p = 1 and $p = \infty$.

Assume 1 .

Since $|f(x) + g(x)|^p \le 2^p [|f(x)|^p + |g(x)|^p]$ we know $f + g \in L^p(E)$.

If $f + g \not\equiv 0$, then by Holder's inequality:

The special case of Holder's inequality where p = q = 2 is called the **Cauchy-Schwarz inequality**.

Cauchy-Schwarz inequality: Let E be measurable and $f, g \in L^2(E)$, then $f \cdot g \in L^1(E)$ and

$$\int_{E} |f \cdot g| \leq \left(\sqrt{\int_{E} f^{2}} \right) \left(\sqrt{\int_{E} g^{2}} \right)$$

This is also the analogue of the Cauchy-Schwarz inequality for vectors in \mathbb{R}^n , i.e. $\vec{v}, \vec{w} \in \mathbb{R}^n$: $|\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| ||\vec{w}||$.

Ex. Prove the if $f \in L^2[a, b]$, then $\int_a^b |f| \le (\sqrt{b-a}) (\int_a^b |f|^2)^{\frac{1}{2}}$ and thus $L^2[a, b] \subseteq L^1[a, b]$.

By the Cauchy-Schwarz inequality we have:

$$\int_{a}^{b} |1 \cdot f| \le \left(\int_{a}^{b} 1\right)^{\frac{1}{2}} \left(\int_{a}^{b} |f|^{2}\right)^{\frac{1}{2}} = \left(\sqrt{b-a}\right) \left(\int_{a}^{b} |f|^{2}\right)^{\frac{1}{2}}.$$

Although $L^2[a, b] \subseteq L^1[a, b], \quad L^1[a, b] \subsetneq L^2[a, b].$ For example, $f(x) = \frac{1}{\sqrt{x}} \in L^1[0, 1], \text{ but } f(x) = \frac{1}{\sqrt{x}} \notin L^2[0, 1].$ Corollary: Let E be a measurable set and 1 . Suppose <math>F is a family of functions in $L^p(E)$ that is bounded in $L^p(E)$, i.e. there is a constant $M \ge 0$ such that:

$$||f||_p \le M \text{ for all } f \in F.$$

Then the family F is uniformly integrable over E.

Proof: Let $\epsilon > 0$.

We must show there exists a $\delta > 0$ such that for any $f \in F$, if $A \subseteq E$ is measurable and $m(A) < \delta$ then $\int_A |f| < \epsilon$.

Let $A \subseteq E$ be measurable and $m(A) < \infty$.

Let g(x) = 1 for $x \in A$. Then $g \in L^q(A)$.

Since $f \in L^p(E)$, it's restriction to A is in $L^p(A)$.

By Holder's inequality:

$$\int_{A} |f| = \int_{A} |f| g \le \left(\int_{A} |f|^{p} \right)^{\frac{1}{p}} \cdot \left(\int_{A} |g|^{q} \right)^{\frac{1}{q}}.$$

But for all $f \in F$:

$$(\int_{A} |f|^{p})^{\frac{1}{p}} \leq (\int_{E} |f|^{p})^{\frac{1}{p}} \leq M \text{ and } (\int_{A} |g|^{q})^{\frac{1}{q}} = (m(A))^{\frac{1}{q}}.$$

So,
$$\int_{A} |f| \leq M(m(A))^{\frac{1}{q}}$$
.
Let $\delta = (\frac{\epsilon}{M})^{q}$.

Then $m(A) < \left(\frac{\epsilon}{M}\right)^{q}$ and $\int_{A} |f| < M \cdot \left(\left(\frac{\epsilon}{M}\right)^{q}\right)^{\frac{1}{q}} = \epsilon$.

Corollary: Let E be a measurable set of finite measure and

$$1 \le p_{1} < p_{2} \le \infty.$$

Then, $L^{p_{2}}(E) \subseteq L^{p_{1}}(E)$
and $||f||_{p_{1}} \le c ||f||_{p_{2}}$ for all $f \in L^{p_{2}}(E)$
where $c = [m(E)]^{(\frac{p_{2}-p_{1}}{p_{2}p_{1}})}$ if $p_{2} < \infty$ and
 $c = [m(E)]^{(\frac{1}{p_{1}})}$ if $p_{2} = \infty.$

Proof: Assume $p_2 < \infty$.

Define
$$p = \frac{p_2}{p_1} > 1$$
 and let q be the conjugate of p .
Let $f \in L^{p_2}(E)$. So $\int_E |f|^{p_2} < \infty$.

Notice that $f^{p_1} \in L^p(E)$ since $\int_E |f^{p_1}|^p = \int_E |f|^{p_2} < \infty$. And $g = \chi_E$ belongs to $L^q(E)$ because $m(E) < \infty$.

By the Holder inequality:

$$\begin{split} \int_{E} |f|^{p_{1}} &= \int_{E} |f|^{p_{1}} \cdot g \leq \|f^{p_{1}}\|_{p} \|g\|_{q} \\ &= \left(\int_{E} |f^{p_{1}}|^{\frac{p_{2}}{p_{1}}}\right)^{\frac{p_{1}}{p_{2}}} \left(\int_{E} |g|^{q}\right)^{\frac{1}{q}} \\ &= \left[\left(\int_{E} |f|^{p_{2}}\right)^{\frac{1}{p_{2}}}\right]^{p_{1}} (m(E))^{\frac{1}{q}} \\ &= \|f\|_{p_{2}}^{p_{1}} (m(E))^{\frac{1}{q}}. \end{split}$$

So:

$$\|f\|_{p_{1}} = \left(\int_{E} |f|^{p_{1}}\right)^{\frac{1}{p_{1}}} \leq \|f\|_{p_{2}}(m(E))^{\frac{1}{q}(\frac{1}{p_{1}})}$$

$$p = \frac{p_{2}}{p_{1}}, \quad \text{and } \frac{1}{p} + \frac{1}{q} = 1$$
so $\frac{1}{p} = 1 - \frac{p_{1}}{p_{2}} \quad \text{and } \frac{1}{q} \cdot \frac{1}{p_{1}} = \frac{p_{2} - p_{1}}{p_{1}p_{2}}$

$$\|f\|_{p_{1}} \leq \|f\|_{p_{2}}(m(E))^{(\frac{p_{2} - p_{1}}{p_{1}p_{2}})}.$$

If
$$p_2 = \infty$$
 and $f \in L^{\infty}(E)$ then
 $\|f\|_{p_1} = (\int_E |f|^{p_1})^{\frac{1}{p_1}} \le [(\|f\|_{\infty})^{p_1} \int_E 1]^{\frac{1}{p_1}}$
 $= \|f\|_{\infty} (m(E))^{\frac{1}{p_1}}.$

Ex. Show that If E = [0,1] and $1 \le p_1 < p_2 \le \infty$, $L^{p_2}(E)$ is a proper subspace of $L^{p_1}(E)$.

$$\begin{split} m(E) &< \infty \text{ so } L^{p_2}(E) \subseteq L^{p_1}(E).\\ \text{Let } f(x) &= x^{\alpha}, \ 0 < x \leq 1, \ \text{ where } -\frac{1}{p_1} < \alpha \leq -\frac{1}{p_2},\\ \text{then } f(x) \in L^{p_1}(E) \sim L^{p_2}(E).\\ \text{For example, if } p_1 &= 1, \ p_2 &= 2; \ -1 < \alpha \leq -\frac{1}{2}\\ \text{then } f(x) &= x^{\alpha} \text{ is } L^1((0,1]) \text{ since } \int_0^1 x^{\alpha} = \frac{1}{1+\alpha}, \text{ but } \int_0^1 x^{2\alpha} = \infty. \end{split}$$

Ex. In general, if $m(E) = \infty$ there are no inclusion relations among $L^p(E)$ spaces. For example, if $E = (0, \infty)$ and $f(x) = \frac{x^{-\frac{1}{2}}}{1+|\ln x|}$ $f \in L^p(E)$ if, and only if, p = 2.