1. Find functions f and g such that $f \in L^2(0, \infty)$, but $f \notin L^1(0, \infty)$, and $g \in L^1(0, \infty)$, but $g \notin L^2(0, \infty)$.

2. Find functions f and g such that $f \in L^{\infty}(0, \infty)$, but $f \notin L^{1}(0, \infty)$, and $g \in L^{1}(0, \infty)$, but $g \notin L^{\infty}(0, \infty)$. (Do not use any examples that are in the class notes for this section).

3. Prove
$$\left|\int_{0}^{2\pi} \frac{\cos(x)}{\sqrt{x^2+1}} dx\right| \le \sqrt{\pi tan^{-1}(2\pi)}.$$

4. Either prove the following statements or find a counterexample to show that it's false.

1. If $f, g \in L^1(0,1)$ then $fg \in L^1(0,1)$.

- 2. If $f, g \in L^2(0,1)$ then $fg \in L^1(0,1)$.
- 3. If $f, g \in L^{\infty}(0,1)$ then $fg \in L^{1}(0,1)$.

5. Suppose that $\{g_n\}$ is bounded in $L^1(0,1)$. Is $\{g_n\}$ uniformly integrable over (0,1)?

6. Show that if f is bounded on E and $f \in L^p(E)$ then $f \in L^{p'}(E)$ for any p' > p.

7. Show that $f(x) = \ln(\frac{1}{x})$ satisfies $f \in L^p(0,1)$ for $1 \le p < \infty$ but $f \notin L^{\infty}(0,1)$.