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                                       Normed Linear Spaces 

 

Let 𝐸 be a measurable set of real numbers.   

Let 𝐹 be the collection of measurable extended real valued function on 𝐸 that 

are finite a.e. on 𝐸. 

Let’s define two functions in 𝐹 to be equivalent, 𝑓 ≅ 𝑔, if 𝑓(𝑥) = 𝑔(𝑥) for 

almost all 𝑥 ∈ 𝐸. 

≅   is an equivalence relation (i.e. it’s reflexive, symmetric, and transitive). 

So we can partition 𝐹 into 𝐹 ≅⁄  , equivalence classes of functions.  

 

Notice that 𝐹 ≅⁄   is a linear space:   𝛼𝑓 + 𝛽𝑔 ∈ 𝐹 if  𝑓, 𝑔 ∈ 𝐹 and 

 𝛼, 𝛽 ∈ ℝ, and the zero element is the class of functions that are 0 a.e. on 𝐸.  

 

Def.  𝑳𝒑(𝑬) = {𝑓 ∈ 𝐹
≅⁄  | ∫ |𝑓|𝑝 < ∞

𝐸
};    1 ≤ 𝑝 < ∞.   

 

Notice that  𝐿𝑝(𝐸) is a linear subspace of 𝐹 ≅⁄   since for any 𝑎, 𝑏 ∈ ℝ: 

                      |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| ≤ 2max {|𝑎|, |𝑏|} 

So                |𝑎 + 𝑏|𝑝 ≤ 2𝑝(max{|𝑎|, |𝑏|})𝑝 ≤ 2𝑝(|𝑎|𝑝 + |𝑏|𝑝).  

 

Thus if 𝑓, 𝑔 ∈ 𝐿𝑝(𝐸) then 𝛼𝑓 ∈ 𝐿𝑝(𝐸) because 

 ∫ |𝛼𝑓|𝑝 = |𝛼|𝑝 ∫ |𝑓|𝑝 < ∞.
𝐸𝐸

  

 

And 𝑓 + 𝑔 ∈ 𝐿𝑝(𝐸) because    |𝑓 + 𝑔|𝑝 ≤ 2𝑝(|𝑓|𝑝 + |𝑔|𝑝) 

So   ∫ |𝑓 + 𝑔|𝑝 ≤ ∫ 2𝑝(|𝑓|𝑝 + |𝑔|𝑝) = 2𝑝(∫ |𝑓|𝑝 + ∫ |𝑔|𝑝) < ∞
𝐸𝐸𝐸𝐸

. 



2 
 

 
 

So 𝛼𝑓 + 𝛽𝑔 ∈ 𝐿𝑝(𝐸).   

 

Clearly 𝑓 = 0  a.e. on 𝐸 is also in 𝐿𝑝(𝐸).  

 

Notice that 𝐿1(𝐸) is just the integrable functions over 𝐸. 

 

Def.  𝑓 ∈ 𝐹 is called essentially bounded if there is come 𝑀 ≥ 0 such that 

|𝑓(𝑥)| ≤ 𝑀 for almost all 𝑥 ∈ 𝐸.  𝑀 is called an essential upper bound for 𝑓. 

 

Ex.   𝑓(𝑥) =
1

𝑥
    if 𝑥 ∈ ℚ,   𝑥 ≠ 0    

                  = 2    if 𝑥 ∉ ℚ,   𝑥 ≠ 0 

        Is essentially bounded on (−∞, ∞) because |𝑓(𝑥)| ≤ 2 a.e.. 

 

Ex.     𝑓(𝑥) =
1

𝑥
    if 𝑥 ∉ ℚ,   𝑥 ≠ 0 

                   = 2    if 𝑥 ∈ ℚ,   𝑥 ≠ 0 

        Is not essentially bounded on (−∞, ∞). 

 

Def.  𝑳∞(𝑬) is the set of essentially bounded function on 𝐸. 

 

𝐿∞(𝐸) is also a linear subspace of 𝐹 ≅⁄ . 

 

Def.  Real valued functions whose domain is a linear space such as 𝐿𝑝(𝐸) are 

called functionals. 
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Ex.  We can define a functional 𝑇 on 𝐿1[0,1] by 

                                       𝑇: 𝐿1[0,1] → ℝ   by  𝑇(𝑓) = ∫ |𝑓|
1

0
.  

 

Def.  Let 𝑋 be a linear space.  A real valued function ‖∙‖ on 𝑋 is called a norm if 

for each 𝑓, 𝑔 ∈ 𝑋 and 𝛼 ∈ ℝ: 

1. ‖𝑓‖ ≥ 0 and ‖𝑓‖ = 0 if and only if 𝑓 = 0.  

2. ‖𝛼𝑓‖ = |𝛼|‖𝑓‖   (positive homogeneity) 

3. ‖𝑓 + 𝑔‖ ≤ ‖𝑓‖ + ‖𝑔‖   (Triangle inequality). 

 

If 𝑋 is a normed linear space, 𝑓 ∈ 𝑋 is called a unit function if ‖𝑓‖ = 1.  Any    

𝑓 ≢ 0,  can be normalized, i.e. turned into a normal function, by taking 
𝑓

‖𝑓‖
 .  

 

Ex.  ℝ𝑛 is a normed linear space with 𝑣 =< 𝑎1, … , 𝑎𝑛 >;  and 

‖𝑣‖ = √𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2  . 

 

Ex.  𝐿1(𝐸) is a normed linear space with ‖𝑓‖1 = ∫ |𝑓|
𝐸

. 

 

Notice that: 

‖𝑓‖1 = ∫ |𝑓|
𝐸

≥ 0 and ‖𝑓‖1 = ∫ |𝑓|
𝐸

= 0 if and only if 𝑓 = 0 a.e. on 𝐸. 

‖𝜆𝑓‖1 = ∫ |𝜆𝑓| = |
𝐸

𝜆| ∫ |𝑓| = |𝜆|
𝐸

‖𝑓‖1   

 

|𝑓 + 𝑔| ≤ |𝑓| + |𝑔|   a.e on 𝐸 so 

‖𝑓 + 𝑔‖1 = ∫ |𝑓 + 𝑔| ≤ ∫ |𝑓|
𝐸

+ ∫ |𝑔| = ‖𝑓‖1 + ‖𝑔‖1𝐸𝐸
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Ex.  𝐿∞(𝐸) is a normed linear space with 

 ‖𝑓‖∞ = inf {𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 𝑜𝑓 𝑓}.  This is called the essential 

supremum of 𝑓. 

 

Nonnegativity and homogeneity follow as in the previous example .  

 

 

To prove the triangle inequality we first show |𝑓| ≤ ‖𝑓‖∞ a.e. on 𝐸.  

 

For each 𝑛, there is a subset 𝐸𝑛 ⊆ 𝐸 with |𝑓| ≤ ‖𝑓‖∞ +
1

𝑛
  on 𝐸~𝐸𝑛 and 

𝑚(𝐸𝑛) = 0.  

 

Let 𝐸∞ = ⋃ 𝐸𝑛
∞
𝑛=1 , then |𝑓| ≤ ‖𝑓‖∞ on 𝐸~𝐸∞ and 𝑚(𝐸∞) = 0.   

 

Thus  |𝑓| ≤ ‖𝑓‖∞ a.e. on 𝐸.    

 

So we have: 

                        |𝑓 + 𝑔| ≤ |𝑓| + |𝑔| ≤ ‖𝑓‖∞ + ‖𝑔‖∞   a.e. on 𝐸.   

 

So ‖𝑓‖∞ + ‖𝑔‖∞ is an essential upper bound for 𝑓 + 𝑔 thus                         

                         ‖𝑓 + 𝑔‖∞ ≤ ‖𝑓‖∞ + ‖𝑔‖∞. 
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Ex.  For 1 ≤ 𝑝 < ∞ define 𝒍𝒑 to be the collection of real sequences  

 𝑎 = (𝑎1, 𝑎2, 𝑎3, … ) for which ∑ |𝑎𝑘|𝑝 < ∞∞
𝑘=1 .  𝑙𝑝 is a linear space. 

 

Suppose that if 𝑎 = (𝑎1, 𝑎2, 𝑎3, … ) and 𝑏 = (𝑏1, 𝑏2, 𝑏3, … ) such that 

∑ |𝑎𝑘|𝑝 < ∞∞
𝑘=1  and ∑ |𝑏𝑘|𝑝 < ∞∞

𝑘=1 .   

 

then 𝑎 + 𝑏 = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, … ).  

 

To see that 𝑎 + 𝑏 ∈ 𝑙𝑝 notice that: 

|𝑎𝑖 + 𝑏𝑖|𝑝 ≤ 2𝑝(|𝑎𝑖|𝑝 + |𝑏𝑖|𝑝). 
 

Which means  

∑ |𝑎𝑘 + 𝑏𝑘|𝑝 ≤ 2𝑝 ∑ (|𝑎𝑘|𝑝 + |𝑏𝑘|𝑝) < ∞∞
𝑘=1

∞
𝑘=1 .  

 

𝜆𝑎 = (𝜆𝑎1, 𝜆𝑎2, 𝜆𝑎3, … ) ;  

∑ |𝜆𝑎𝑘|𝑝 = |𝜆|𝑝 ∑ |𝑎𝑘|𝑝∞
𝑘=1 < ∞∞

𝑘=1   

so 𝜆𝑎 ∈ 𝑙𝑝.  

 

The zero sequence, 𝑎 = (0, 0, 0, … ) is also in 𝑙𝑝, so 𝑙𝑝 is a linear space. 
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We define a norm on 𝑙1 by 

                     ‖𝒂‖𝟏 = ∑ |𝑎𝑘|∞
𝑘=1 .  

 

We define a norm on 𝑙𝑝 by 

                      ‖𝒂‖𝒑 = √∑ |𝑎𝑘|𝑝∞
𝑘=1

𝑝
   

 

We define 𝑙∞ to be bounded sequences and the norm by: 

                      ‖𝒂‖∞ = sup
1≤𝑘<∞

|𝑎𝑘|   

 

 

 

Ex.  Let 𝐶[𝑎, 𝑏] = {continuous function on [𝑎, 𝑏]}, where [𝑎, 𝑏] is a closed 

bounded interval.  This is a normed linear space with  

                      ‖𝑓‖ = max
𝑥∈[𝑎,𝑏]

|𝑓(𝑥)|. 

 

Note: There can be more than 1 norm defined on a linear space. 

           For example, we could define a different norm on 𝐶[0,1] by: 

                                  ‖𝑓‖ = ∫ |𝑓|
𝑏

𝑎
 . 


