Normed Linear Spaces

Let E be a measurable set of real numbers.

Let F be the collection of measurable extended real valued function on E that are finite a.e. on E.

Let's define two functions in F to be equivalent, $f \cong g$, if f(x) = g(x) for almost all $x \in E$.

 \cong is an equivalence relation (i.e. it's reflexive, symmetric, and transitive).

So we can partition F into $F/_{\cong}$, equivalence classes of functions.

Notice that F/\cong is a linear space: $\alpha f + \beta g \in F$ if $f, g \in F$ and $\alpha, \beta \in \mathbb{R}$, and the zero element is the class of functions that are 0 a.e. on *E*.

Def.
$$L^p(E) = \{ f \in F/\cong | \int_E |f|^p < \infty \}; \quad 1 \le p < \infty.$$

Notice that $L^p(E)$ is a linear subspace of $F/_{\cong}$ since for any $a, b \in \mathbb{R}$:

$$|a+b| \le |a| + |b| \le 2\max\{|a|, |b|\}$$

So
$$|a+b|^p \le 2^p (\max\{|a|, |b|\})^p \le 2^p (|a|^p + |b|^p)$$

Thus if $f, g \in L^p(E)$ then $\alpha f \in L^p(E)$ because

$$\int_E |\alpha f|^p = |\alpha|^p \int_E |f|^p < \infty.$$

And $f + g \in L^{p}(E)$ because $|f + g|^{p} \le 2^{p}(|f|^{p} + |g|^{p})$ So $\int_{E} |f + g|^{p} \le \int_{E} 2^{p}(|f|^{p} + |g|^{p}) = 2^{p}(\int_{E} |f|^{p} + \int_{E} |g|^{p}) < \infty.$ So $\alpha f + \beta g \in L^p(E)$.

Clearly f = 0 a.e. on E is also in $L^p(E)$.

Notice that $L^1(E)$ is just the integrable functions over E.

Def. $f \in F$ is called **essentially bounded** if there is come $M \ge 0$ such that $|f(x)| \le M$ for almost all $x \in E$. *M* is called an essential upper bound for *f*.

Ex. $f(x) = \frac{1}{x}$ if $x \in \mathbb{Q}$, $x \neq 0$ = 2 if $x \notin \mathbb{Q}$, $x \neq 0$

Is essentially bounded on $(-\infty, \infty)$ because $|f(x)| \le 2$ a.e.

Ex. $f(x) = \frac{1}{x}$ if $x \notin \mathbb{Q}$, $x \neq 0$ = 2 if $x \in \mathbb{Q}$, $x \neq 0$

Is not essentially bounded on $(-\infty, \infty)$.

Def. $L^{\infty}(E)$ is the set of essentially bounded function on E.

 $L^{\infty}(E)$ is also a linear subspace of $F/_{\cong}$.

Def. Real valued functions whose domain is a linear space such as $L^{p}(E)$ are called **functionals**.

Ex. We can define a functional T on $L^1[0,1]$ by

$$T: L^1[0,1] \to \mathbb{R}$$
 by $T(f) = \int_0^1 |f|.$

Def. Let X be a linear space. A real valued function $\|\cdot\|$ on X is called a **norm** if for each $f, g \in X$ and $\alpha \in \mathbb{R}$:

- 1. $||f|| \ge 0$ and ||f|| = 0 if and only if f = 0.
- 2. $\|\alpha f\| = |\alpha| \|f\|$ (positive homogeneity)
- 3. $||f + g|| \le ||f|| + ||g||$ (Triangle inequality).

If X is a normed linear space, $f \in X$ is called a **unit function** if ||f|| = 1. Any $f \not\equiv 0$, can be normalized, i.e. turned into a normal function, by taking $\frac{f}{\|f\|}$.

Ex. \mathbb{R}^n is a normed linear space with $v = < a_1, \dots, a_n >$; and

 $\|v\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} \,.$

Ex. $L^{1}(E)$ is a normed linear space with $||f||_{1} = \int_{E} |f|$.

Notice that:

$$\begin{split} \|f\|_{1} &= \int_{E} |f| \ge 0 \text{ and } \|f\|_{1} = \int_{E} |f| = 0 \text{ if and only if } f = 0 \text{ a.e. on } E \\ \|\lambda f\|_{1} &= \int_{E} |\lambda f| = |\lambda| \int_{E} |f| = |\lambda| \|f\|_{1} \\ \|f + g\| \le |f| + |g| \text{ a.e on } E \text{ so} \\ \|f + g\|_{1} &= \int_{E} |f + g| \le \int_{E} |f| + \int_{E} |g| = \|f\|_{1} + \|g\|_{1} \end{split}$$

Ex. $L^{\infty}(E)$ is a normed linear space with

 $||f||_{\infty} = \inf \{ essential \ upper \ bounds \ of \ f \}.$ This is called the **essential** supremum of f.

Nonnegativity and homogeneity follow as in the previous example .

To prove the triangle inequality we first show $|f| \leq ||f||_{\infty}$ a.e. on *E*.

For each n, there is a subset $E_n \subseteq E$ with $|f| \leq ||f||_{\infty} + \frac{1}{n}$ on $E \sim E_n$ and $m(E_n) = 0$.

Let $E_{\infty} = \bigcup_{n=1}^{\infty} E_n$, then $|f| \leq ||f||_{\infty}$ on $E \sim E_{\infty}$ and $m(E_{\infty}) = 0$.

Thus $|f| \leq ||f||_{\infty}$ a.e. on *E*.

So we have:

$$|f + g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty}$$
 a.e. on *E*.

So $||f||_{\infty} + ||g||_{\infty}$ is an essential upper bound for f + g thus $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$ Ex. For $1 \le p < \infty$ define l^p to be the collection of real sequences $a = (a_1, a_2, a_3, ...)$ for which $\sum_{k=1}^{\infty} |a_k|^p < \infty$. l^p is a linear space.

Suppose that if $a = (a_1, a_2, a_3, ...)$ and $b = (b_1, b_2, b_3, ...)$ such that $\sum_{k=1}^{\infty} |a_k|^p < \infty$ and $\sum_{k=1}^{\infty} |b_k|^p < \infty$.

then $a + b = (a_1 + b_1, a_2 + b_2, ...).$

To see that $a + b \in l^p$ notice that:

$$|a_i + b_i|^p \le 2^p (|a_i|^p + |b_i|^p).$$

Which means

$$\sum_{k=1}^{\infty} |a_k + b_k|^p \le 2^p \sum_{k=1}^{\infty} (|a_k|^p + |b_k|^p) < \infty.$$

$$\begin{split} \lambda a &= (\lambda a_1, \lambda a_2, \lambda a_3, \dots);\\ \sum_{k=1}^{\infty} |\lambda a_k|^p &= |\lambda|^p \sum_{k=1}^{\infty} |a_k|^p < \infty\\ \text{so } \lambda a \in l^p. \end{split}$$

The zero sequence, a = (0, 0, 0, ...) is also in l^p , so l^p is a linear space.

We define a norm on l^1 by

$$\|\boldsymbol{a}\|_1 = \sum_{k=1}^\infty |a_k|.$$

We define a norm on l^p by

$$\|\boldsymbol{a}\|_{\boldsymbol{p}} = \sqrt[p]{\sum_{k=1}^{\infty} |a_k|^p}$$

We define l^{∞} to be bounded sequences and the norm by:

$$\|\boldsymbol{a}\|_{\infty} = \sup_{1 \le k < \infty} |a_k|$$

Ex. Let $C[a, b] = \{$ continuous function on $[a, b] \}$, where [a, b] is a closed bounded interval. This is a normed linear space with

$$||f|| = \max_{x \in [a,b]} |f(x)|.$$

Note: There can be more than 1 norm defined on a linear space.

For example, we could define a different norm on C[0,1] by:

$$\|f\| = \int_a^b |f| \, .$$