Normed Linear Spaces

Let E be a measurable set of real numbers.

Let F be the collection of measurable extended real valued function on E that are finite a.e. on E .

Let's define two functions in F to be equivalent, $f \cong g$, if $f(x) = g(x)$ for almost all $x \in E$.

 \cong is an equivalence relation (i.e. it's reflexive, symmetric, and transitive).

So we can partition F into $F/_{\simeq}$, equivalence classes of functions.

Notice that $F/_{\cong}$ is a linear space: $\alpha f + \beta g \in F$ if $f, g \in F$ and $\alpha, \beta \in \mathbb{R}$, and the zero element is the class of functions that are 0 a.e. on E.

$$
\text{Def. } L^p(E) = \left\{ f \in \frac{F}{\leq} \, \middle| \, f_E \mid f \mid^p < \infty \right\}; \quad 1 \leq p < \infty.
$$

Notice that $L^p(E)$ is a linear subspace of $^F/\!_{\cong}\,$ since for any $a,b\in\mathbb{R}$:

$$
|a + b| \le |a| + |b| \le 2 \max\{|a|, |b|\}
$$

So
$$
|a + b|^p \le 2^p (\max\{|a|, |b|\})^p \le 2^p (|a|^p + |b|^p).
$$

Thus if $f,g\in L^p(E)$ then $\alpha f\in L^p(E)$ because

$$
\int_E |\alpha f|^p = |\alpha|^p \int_E |f|^p < \infty.
$$

And $f + g \in L^p(E)$ because $|f + g|^p \leq 2^p(|f|^p + |g|^p)$ So $\int_{E} |f+g|^{p} \leq \int_{E} 2^{p} (|f|^{p} + |g|^{p}) = 2^{p} (\int_{E} |f|^{p} + \int_{E} |g|^{p})$ $\int_E |f+g|^p \leq \int_E 2^p (|f|^p+|g|^p) = 2^p (\int_E |f|^p + \int_E |g|^p) < \infty.$ So $\alpha f + \beta g \in L^p(E)$.

Clearly $f = 0$ a.e. on E is also in $L^p(E)$.

Notice that $L^1(E)$ is just the integrable functions over E .

Def. $f \in F$ is called **essentially bounded** if there is come $M \geq 0$ such that $|f(x)| \leq M$ for almost all $x \in E$. M is called an essential upper bound for f.

Ex. $f(x) = \frac{1}{x}$ $\frac{1}{x}$ if $x \in \mathbb{Q}$, $x \neq 0$ $= 2$ if $x \notin \mathbb{O}$, $x \neq 0$

Is essentially bounded on $(-\infty, \infty)$ because $|f(x)| \leq 2$ a.e..

Ex. $f(x) = \frac{1}{x}$ $\frac{1}{x}$ if $x \notin \mathbb{Q}$, $x \neq 0$ $= 2$ if $x \in \mathbb{Q}$, $x \neq 0$

Is not essentially bounded on $(-\infty, \infty)$.

Def. $\, \boldsymbol{L}^{\infty}(\boldsymbol{E})\,$ is the set of essentially bounded function on $E.$

 $L^\infty(E)$ is also a linear subspace of $^F\!/\!_{\widetilde{\Xi}}.$

Def. Real valued functions whose domain is a linear space such as $L^p(E)$ are called **functionals**.

Ex. We can define a functional T on $L^1[0,1]$ by

$$
T: L^{1}[0,1] \to \mathbb{R}
$$
 by $T(f) = \int_{0}^{1} |f|$.

Def. Let X be a linear space. A real valued function $||⋅||$ on X is called a **norm** if for each f , $g \in X$ and $\alpha \in \mathbb{R}$:

- 1. $||f|| \ge 0$ and $||f|| = 0$ if and only if $f = 0$.
- 2. $\|\alpha f\| = |\alpha| \|f\|$ (positive homogeneity)
- 3. $||f + g|| \le ||f|| + ||g||$ (Triangle inequality).

If X is a normed linear space, $f \in X$ is called a **unit function** if $||f|| = 1$. Any $f\not\equiv 0$, can be normalized, i.e. turned into a normal function, by taking \int $\|f\|$.

Ex. \mathbb{R}^n is a normed linear space with $\nu=< a_1,...,a_n >; \,$ and $||v|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$.

Ex. $L^1(E)$ is a normed linear space with $||f||_1 = \int_E |f|$.

Notice that:

$$
||f||_1 = \int_E |f| \ge 0 \text{ and } ||f||_1 = \int_E |f| = 0 \text{ if and only if } f = 0 \text{ a.e. on } E.
$$

$$
||\lambda f||_1 = \int_E |\lambda f| = |\lambda| \int_E |f| = |\lambda| ||f||_1
$$

$$
|f + g| \le |f| + |g| \text{ a.e on } E \text{ so}
$$

$$
||f + g||_1 = \int_E |f + g| \le \int_E |f| + \int_E |g| = ||f||_1 + ||g||_1
$$

Ex. $L^{\infty}(E)$ is a normed linear space with

 $||f||_{∞} = inf$ {*essential upper bounds of f*}. This is called the **essential supremum** of f .

Nonnegativity and homogeneity follow as in the previous example .

To prove the triangle inequality we first show $|f| \leq ||f||_{\infty}$ a.e. on E .

For each n , there is a subset $E_n\subseteq E$ with $|f|\leq \|f\|_{\infty}+\frac{1}{n}$ $\frac{1}{n}$ on $E \sim E_n$ and $m(E_n)=0.$

Let $E_{\infty} = \bigcup_{n=1}^{\infty} E_n$ $_{n=1}^{\infty}E_{n}$, then $|f|\leq\|f\|_{\infty}$ on $E\!\sim\!E_{\infty}$ and $m(E_{\infty})=0.$

Thus $|f| \leq ||f||_{\infty}$ a.e. on E.

So we have:

$$
|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty} \text{ a.e. on } E.
$$

So $||f||_{\infty} + ||g||_{\infty}$ is an essential upper bound for $f + g$ thus $||f + g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}.$

Ex. For $1\leq p<\infty$ define $\bm{l^p}$ to be the collection of real sequences $a = (a_1, a_2, a_3, ...)$ for which $\sum_{k=1}^{\infty} |a_k|$ $\sum_{k=1}^{\infty} |a_k|^p < \infty$. l^p is a linear space.

Suppose that if $a = (a_1, a_2, a_3, ...)$ and $b = (b_1, b_2, b_3, ...)$ such that $\sum_{k=1}^{\infty} |a_k|$ $\sum_{k=1}^{\infty} |a_k|^p < \infty$ and $\sum_{k=1}^{\infty} |b_k|$ $_{k=1}^{\infty}$ $|b_k|^p < \infty$.

then $a + b = (a_1 + b_1, a_2 + b_2, ...)$.

To see that $a+b\in l^p$ notice that:

$$
|a_i + b_i|^p \le 2^p (|a_i|^p + |b_i|^p).
$$

Which means

$$
\sum_{k=1}^{\infty} |a_k + b_k|^p \le 2^p \sum_{k=1}^{\infty} (|a_k|^p + |b_k|^p) < \infty.
$$

$$
\lambda a = (\lambda a_1, \lambda a_2, \lambda a_3, \dots);
$$

\n
$$
\sum_{k=1}^{\infty} |\lambda a_k|^p = |\lambda|^p \sum_{k=1}^{\infty} |a_k|^p < \infty
$$

\nso $\lambda a \in l^p$.

The zero sequence, $a = (0, 0, 0, ...)$ is also in l^p , so l^p is a linear space.

We define a norm on l^1 by

$$
\|\boldsymbol{a}\|_1=\sum_{k=1}^\infty |a_k|.
$$

We define a norm on l^p by

$$
\|\boldsymbol{a}\|_{\boldsymbol{p}} = \sqrt[p]{\sum_{k=1}^{\infty} |a_k|^p}
$$

We define l^{∞} to be bounded sequences and the norm by:

$$
\|\boldsymbol{a}\|_{\infty} = \sup_{1 \leq k < \infty} |a_k|
$$

Ex. Let $C[a, b] = \{$ continuous function on $[a, b]$, where $[a, b]$ is a closed bounded interval. This is a normed linear space with

$$
||f|| = \max_{x \in [a,b]} |f(x)|.
$$

Note: There can be more than 1 norm defined on a linear space.

For example, we could define a different norm on $C[0,1]$ by:

$$
||f|| = \int_a^b |f|.
$$