1. Let $||f|| = \int_0^1 x^2 |f|$ for $f \in L^1[0,1]$. Show that this is a norm on $L^1[0,1]$.

- 2. Let $||f|| = \int_{a}^{b} |f|$ for $f \in C[a, b]$.
- a. Show that this is a norm on C[a, b].
- b. Show that there does not exist a $c \ge 0$ such that

$$||f|| \le c(\max_{a \le x \le b} |f(x)|) \text{ for all } f \in C[a, b].$$