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Lebesgue Measurable Sets 

 

The outer measure 𝑚∗ has 4 important properties: 

1. It’s defined for all sets of real numbers. 

2. 𝑚∗(𝐼) = 𝑙(𝐼) = 𝑏 − 𝑎, for any interval (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏]. 

3. 𝑚∗(⋃ 𝐸𝑘
∞
𝑘=1 ) ≤ ∑ 𝑚∗(𝐸𝑘)∞

𝑘=1  (i.e. 𝑚∗ is countably subadditive). 

4. 𝑚∗(𝑡 + 𝐸) = 𝑚∗(𝐸) for any 𝑡 ∈ ℝ (i.e. 𝑚∗ is translation invariant). 

The problem is there are disjoint sets 𝐴, 𝐵 such that: 

𝑚∗(𝐴 ∪ 𝐵) < 𝑚∗(𝐴) + 𝑚∗(𝐵). 

This does not correspond well to one’s intuition about how a measure should 

work. To solve this problem we will simply remove these “bad” sets. 

 

For any set 𝐸 ⊆ ℝ, Notice that we can always write a set 𝐴 as: 

𝐴 = (𝐴 ∩ 𝐸) ∪ (𝐴 ∩ 𝐸𝑐).  

 

Def.   A set 𝐸 ⊆ ℝ is said to be measurable provided for any set 𝐴: 

𝑚∗(𝐴) = 𝑚∗(𝐴 ∩ 𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐). 

 

   Notice that if 𝐸 is a measurable set and 𝐷 is any set with 𝐸 ∩ 𝐷 = 𝜙, 

    and we take the set 𝐴 = 𝐸 ∪ 𝐷, we get: 

𝑚∗(𝐸 ∪ 𝐷) = 𝑚∗([𝐸 ∪ 𝐷] ∩ 𝐸) + 𝑚∗([𝐸 ∪ 𝐷] ∩ 𝐸𝑐) 

                                        = 𝑚∗(𝐸) + 𝑚∗(𝐷)          i.e. there’s no inequality. 
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If we write 𝐴 = [𝐴 ∩ 𝐸] ∪ [𝐴 ∩ 𝐸𝑐] and 𝐴 is any set (possibly not measurable) 

we know from the subadditivity of 𝑚∗: 

𝑚∗(𝐴) ≤ 𝑚∗(𝐴 ∩ 𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐). 

 

Thus 𝐸 is measurable if, and only if: 

𝑚∗(𝐴) ≥ 𝑚∗(𝐴 ∩ 𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐). 

 

This last inequality will always hold if 𝑚∗(𝐴) = ∞. So it’s enough to show 𝐸 is 

measurable by showing this inequality holds for sets 𝐴 where 𝑚∗(𝐴) is finite. 

 

The definition of a set 𝐸 being measurable is symmetric in 𝐸 and 𝐸𝑐.  

 

Thus 𝐸 is measurable if, and only if, 𝐸𝑐 is measurable.  

 

Prop.   If 𝑚∗(𝐸) = 0 then 𝐸 is measurable.  

 

Proof:  Let 𝐴 be any set.   

           𝐴 ∩ 𝐸 ⊆ 𝐸 and 𝐴 ∩ 𝐸𝑐 ⊆ 𝐴 thus, 

0 ≤ 𝑚∗(𝐴 ∩ 𝐸) ≤ 𝑚∗(𝐸) = 0   and   𝑚∗(𝐴 ∩ 𝐸𝑐) ≤ 𝑚∗(𝐴).  

 

Thus we have: 

𝑚∗(𝐴) ≥ 𝑚∗(𝐴 ∩ 𝐸𝑐) = 0 + 𝑚∗(𝐴 ∩ 𝐸𝑐) = 𝑚∗(𝐴 ∩ 𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐) 

Hence 𝐸 is measurable. 
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Prop.   Let 𝐸1, … , 𝐸𝑛 be measurable sets then ⋃ 𝐸𝑘
𝑛
𝑖=1  is a measurable set. 

 

Proof:  Let’s start by showing this for two measurable sets 𝐸1 and 𝐸2. 

 Let 𝐴 be any set.  

Since 𝐸1 is measurable: 

𝑚∗(𝐴) = 𝑚∗(𝐴 ∩ 𝐸1) + 𝑚∗(𝐴 ∩ 𝐸1
𝑐). 

 

Since 𝐸2 is measurable: 

𝑚∗(𝐴 ∩ 𝐸1
𝑐) = 𝑚∗([𝐴 ∩ 𝐸1

𝑐] ∩ 𝐸2) + 𝑚∗([𝐴 ∩ 𝐸1
𝑐] ∩ 𝐸2

𝑐) 
 

Thus: 

𝑚∗(𝐴) = 𝑚∗(𝐴 ∩ 𝐸1) + 𝑚∗([𝐴 ∩ 𝐸1
𝑐] ∩ 𝐸2) + 𝑚∗([𝐴 ∩ 𝐸1

𝑐] ∩ 𝐸2
𝑐) 

  

Now using the identities: 

[𝐴 ∩ 𝐸1
𝑐] ∩ 𝐸2

𝑐 = 𝐴 ∩ [𝐸1 ∪ 𝐸2]𝑐 

                (𝐴 ∩ 𝐸1) ∪ [𝐴 ∩ 𝐸1
𝑐 ∩ 𝐸2] = 𝐴 ∩ [𝐸1 ∪ 𝐸2] 

 we get: 

𝑚∗(𝐴) = 𝑚∗(𝐴 ∩ 𝐸1) + 𝑚∗([𝐴 ∩ 𝐸1
𝑐] ∩ 𝐸2) + 𝑚∗(𝐴 ∩ [𝐸1 ∪ 𝐸2]𝑐) 

                  ≥ 𝑚∗([𝐴 ∩ 𝐸1] ∪ [𝐴 ∩ 𝐸1
𝑐 ∩ 𝐸2]) + 𝑚∗(𝐴 ∩ [𝐸1 ∪ 𝐸2]𝑐) 

                  = 𝑚∗(𝐴 ∩ [𝐸1 ∪ 𝐸2]) + 𝑚∗(𝐴 ∩ [𝐸1 ∪ 𝐸2]𝑐).  

 

 Thus 𝐸1 ∪ 𝐸2 is measurable. 
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 To prove for a finite union use mathematical induction. 

            For 𝑛 = 1, by assumption the set is measurable.  

            If we assume the statement is true for 𝑛 − 1:  

                   ⋃ 𝐸𝑘
𝑛
𝑖=1 = [⋃ 𝐸𝑘] ∪ 𝐸𝑛

𝑛−1
𝑖=1 .  

 

           Just let one set be ⋃ 𝐸𝑘
𝑛−1
𝑖=1  and the second set be 𝐸𝑛 and the previous    

             proof shows ⋃ 𝐸𝑘
𝑛
𝑖=1  is measurable. 

 

Prop.  Let 𝐴 be any set and {𝐸𝑘}𝑘=1
𝑛  a finite disjoint collection of      

 measurable sets. Then: 

𝑚∗(𝐴 ∩ [⋃ 𝐸𝑘]) =𝑛
𝑘=1 ∑ 𝑚∗(𝐴 ∩ 𝐸𝑘)𝑛

𝑘=1 . 

 Thus if 𝐴 = ⋃ 𝐸𝑘
𝑛
𝑘=1  then, 

     𝑚∗(⋃ 𝐸𝑘
𝑛
𝑘=1 ) = ∑ 𝑚∗(𝐸𝑘)𝑛

𝑘=1 . 

 

 

Proof:  By induction, if 𝑛 = 1 then the conclusion is 

𝑚∗(𝐴 ∩ 𝐸) = 𝑚∗(𝐴 ∩ 𝐸), which is clearly true.  

 

Assume the statement is true for 𝑛 − 1 and prove it’s true for 𝑛:  

  

We know that 𝐸𝑛 is measurable so we can say, 

𝑚∗(𝐴 ∩ ⋃ 𝐸𝑘
𝑛
𝑘=1 ) = 𝑚∗([𝐴 ∩ ⋃ 𝐸𝑘]𝑛

𝑘=1 ∩ 𝐸𝑛) + 𝑚∗([𝐴 ∩ ⋃ 𝐸𝑘]𝑛
𝑘=1 ∩ 𝐸𝑛

𝑐)  

 

(Think of the arbitrary set 𝐴 in the definition of 𝐸𝑛 being measurable as being the 

set 𝐴 ∩ ⋃ 𝐸𝑘
𝑛
𝑘=1 ). 
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Notice that since {𝐸𝑘}𝑘=1
𝑛  are disjoint: 

𝐴 ∩ [⋃ 𝐸𝑘]𝑛
𝑘=1 ∩ 𝐸𝑛 = 𝐴 ∩ 𝐸𝑛  

 and                    𝐴 ∩ [⋃ 𝐸𝑘]𝑛
𝑘=1 ∩ 𝐸𝑛

𝑐 = 𝐴 ∩ [⋃ 𝐸𝑘]𝑛−1
𝑘=1  

 

 so           𝑚∗(𝐴 ∩ ⋃ 𝐸𝑘
𝑛
𝑘=1 ) = 𝑚∗(𝐴 ∩ 𝐸𝑛) + 𝑚∗(𝐴 ∩ ⋃ 𝐸𝑘

𝑛−1
𝑘=1 ).  

 

  By induction we know,  𝑚∗(𝐴 ∩ ⋃ 𝐸𝑘
𝑛−1
𝑘=1 ) = ∑ 𝑚∗(𝐴 ∩ 𝐸𝑘)𝑛−1

𝑘=1  

 so            𝑚∗(𝐴 ∩ ⋃ 𝐸𝑘
𝑛
𝑘=1 ) = 𝑚∗(𝐴 ∩ 𝐸𝑛) + ∑ 𝑚∗(𝐴 ∩ 𝐸𝑘)𝑛−1

𝑘=1  

                         = ∑ 𝑚∗(𝐴 ∩ 𝐸𝑘).𝑛
𝑘=1   

 

Def.   A collection of subsets of ℝ is called an algebra if it contains ℝ  and is 

          closed under the formation of complements and finite unions.  

 

Thus, the set of measurable sets in an algebra.  

 

 Notice also that any collection of sets that are closed under 

 complements and finite unions is closed under finite intersections. 

 The union of a countable collection of measurable sets can be written as a 

            union of a countable collection of disjoint measurable sets. Let {𝐴𝑘}𝑘=1
∞  be 

            a countable collection of measurable sets: 

Let 𝐴1
′ = 𝐴1 and 𝐴𝑘

′ = 𝐴𝑘~ ⋃ 𝐴𝑖
𝑘−1
𝑖=1 . 

           Since the collection of measurable sets is an algebra, {𝐴𝑘′}𝑘=1
∞  are also    

            measurable sets (but are disjoint) and ⋃ 𝐴𝑘
∞
𝑘=1 = ⋃ 𝐴𝑘′∞

𝑘=1 . 
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Prop.  If {𝐸𝑘}𝑘=1
∞  is a countable collection of measurable sets then ⋃ 𝐸𝑖

∞
𝑖=1  is 

measurable. 

 

Proof:  Let 𝐸 be a countable union of measurable sets. We can write: 

𝐸 = ⋃ 𝐸𝑖
∞
𝑖=1  where the {𝐸𝑖}𝑖=1

∞  are disjoint.  

 

 Let 𝐴 be any set.  

           Let  𝐵𝑛 = ⋃ 𝐸𝑘
𝑛
𝑘=1 .  

 

         𝐵𝑛 is measurable because it’s a finite union of measurable sets and        

         𝐵𝑛
𝑐 ⊇ 𝐸𝑐  so: 

𝑚∗(𝐴) = 𝑚∗(𝐴 ∩ 𝐵𝑛) + 𝑚∗(𝐴 ∩ 𝐵𝑛
𝑐) ≥ 𝑚∗(𝐴 ∩ 𝐵𝑛) + 𝑚∗(𝐴 ∩ 𝐸𝑐). 

 

      Since {𝐸𝑖}𝑖=1
∞ are disjoint:   

                                     𝑚∗(𝐴 ∩ 𝐵𝑛) = ∑ 𝑚∗(𝐴 ∩ 𝐸𝑘)𝑛
𝑘=1   

      thus, 𝑚∗(𝐴) ≥ ∑ 𝑚∗(𝐴 ∩ 𝐸𝑘)𝑛
𝑘=1 + 𝑚∗(𝐴 ∩ 𝐸𝑐),    for all 𝑛. 

 

       Hence:                 𝑚∗(𝐴) ≥ ∑ 𝑚∗(𝐴 ∩ 𝐸𝑘)∞
𝑘=1 + 𝑚∗(𝐴 ∩ 𝐸𝑐).  

 

         By countable subadditivity we have,  

 𝑚∗(𝐴) ≥ 𝑚∗(𝐴 ∩ 𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐). 

   Thus, 𝐸 is measurable.   

 

Def.  A collection of subsets of ℝ is called a 𝝈-algebra if it contains ℝ 

         and is closed under the formation of complements and countable   

         unions.        
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Thus the collection of measurable sets is a 𝜎-algebra. 

 By the laws of set theory, if a collection of sets is closed under 

 complements and countable unions then it’s closed under countable 

            intersections. 

 

Prop.   Every interval is measurable. 

 

Proof:  To show every interval is measurable we only need to show intervals of 

              the form (𝑎, ∞) are measurable because measurable sets are a 𝜎-algebra 

              (Thus, every interval can be created from (𝑎, ∞) via complements and 

               countable unions.). 

 Let 𝐴 be any set. Assume 𝑎 ∉ 𝐴, otherwise replace 𝐴 by 𝐴~{𝑎}. 

 We must show: 

                            𝑚∗(𝐴1) + 𝑚∗(𝐴2) ≤ 𝑚∗(𝐴)                                                       
           where 𝐴1 = 𝐴 ∩ (−∞, 𝑎) and 𝐴2 = 𝐴 ∩ (𝑎, ∞).   

            

                                      Since 𝑚∗(𝐴) is an infimum, we just need to show that for any countable    

          collection {𝐼𝑘}𝑘=1
∞  of open bounded intervals that covers 𝐴 (we can 

            assume 𝑚∗(𝐴) is finite, so each 𝐼𝑘 is bounded):  

                             𝑚∗(𝐴1) + 𝑚∗(𝐴2) ≤ ∑ 𝑙(𝐼𝑘)∞
𝑘=1 .  

 

 Define 𝐼𝑘,1 = 𝐼𝑘 ∩ (−∞, 𝑎),    𝐼𝑘,2 = 𝐼𝑘 ∩ (𝑎, ∞).   

 

Then, 𝑙(𝐼𝑘) = 𝑙(𝐼𝑘,1) + 𝑙(𝐼𝑘,2).  

 

 Since {𝐼𝑘,1}𝑘=1
∞  and {𝐼𝑘,2}𝑘=1

∞   are countable collections of open bounded 

             intervals that cover 𝐴1 and 𝐴2 respectively 

      𝑚∗(𝐴1) ≤ ∑ 𝑙(𝐼𝑘,1)∞
𝑘=1  and 𝑚∗(𝐴2) ≤ ∑ 𝑙(𝐼𝑘,2)∞

𝑘=1 . 
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Therefore:        𝑚∗(𝐴1) + 𝑚∗(𝐴2) ≤ ∑ 𝑙(𝐼𝑘,1)∞
𝑘=1 + ∑ 𝑙(𝐼𝑘,2)∞

𝑘=1  

                                          = ∑ (𝑙(𝐼𝑘,1)∞
𝑘=1 + 𝑙(𝐼𝑘,2))  

                       = ∑ 𝑙∞
𝑘=1 (𝐼𝑘).  

So 𝑚∗(𝐴1) + 𝑚∗(𝐴2) ≤ 𝑚∗(𝐴) and the interval is measurable. 

 

Every open set in ℝ is the disjoint union of a countable collection of open 

intervals. Thus, by the two previous propositions, every open set is measurable. 

Every closed set is the complement of an open set, thus every closed set is 

measurable.  

 

Def.  𝐸 is called a 𝑮𝜹 set if it is the intersection of a countable collection of open 

         sets. 𝐸 is called an 𝑭𝝈 set if it is the union of a countable collection of closed 

         sets.  

 

Ex.     A 𝐺𝛿  need not be open and an 𝐹𝜎 set need not be closed.  

 

 Let 𝐴𝑛 = (−
1

𝑛
,

1

𝑛
) ∪ (2, 3).  

Then 𝐴 = ⋂ 𝐴𝑛
∞
𝑖=1 = {0} ∪ (2, 3) is a 𝐺𝛿  set.  

 

Let 𝐵𝑛 = [0, 1 −
1

𝑛
].  

Then 𝐵 = ⋃ 𝐵𝑛
∞
𝑛=1 = [0, 1) is an 𝐹𝜎 set. 

 

Since every open set or closed set is measurable and measurable  

sets form a 𝜎-algebra (hence countable intersections or unions 

are measurable) every 𝐺𝛿  and 𝐹𝜎 set is measurable. 
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Ex.    The set of irrational numbers, ℝ~ℚ, is a 𝐺𝛿  set because: 

                             ℝ~ℚ = ⋂ (ℝ~𝑞𝑖);∞
𝑖=1    where  ⋃ 𝑞𝑖

∞
𝑖=1  = ℚ. 

 

Ex.  Every closed interval is a 𝐺𝛿  set since: 

                                [𝑎, 𝑏] = ⋂ (𝑎 −
1

𝑖
, 𝑏 +

1

𝑖
) .∞

𝑖=1  

 

Ex.  Every open interval is an 𝐹𝜎 set since: 

                                (𝑎, 𝑏) = ⋃ [𝑎 +
1

𝑖
 , 𝑏 −

1

𝑖
].  ∞

𝑖=1        

 

The complement of a 𝐺𝛿  set is an 𝐹𝜎 set and the complement of an 𝐹𝜎 set is a 𝐺𝛿  
set. 

  

Def.   The Borel 𝜎-algebra is defined to be the smallest 𝜎-algebra of subsets of ℝ    

         containing the open sets (equivalently, it’s the 𝜎-algebra generated by open 

           intervals in ℝ).  

The elements of the Borel 𝜎-algebra are called Borel sets. 

 

Ex.   Every 𝐺𝛿  and 𝐹𝜎 set is a Borel Set. 

 

Since the collection of measurable sets contains all of the open sets and is a         

𝜎-algebra, it must contain all of the Borel sets as well. Thus we have: 

 

Theorem:  Every Borel set is measurable. Each interval, open set, closed  

 set, 𝐺𝛿  set, and 𝐹𝜎 set is measurable. 
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Prop.   The translate of a measurable set is measurable. 

 

Proof:  Let 𝐸 be a measurable set. Let 𝐴 be any set and 𝑡 ∈ ℝ. 

   Since 𝐸 is measurable and the outer measure is translation invariant: 

𝑚∗(𝐴) = 𝑚∗(𝐴 − 𝑡) = 𝑚∗([𝐴 − 𝑡] ∩ 𝐸) + 𝑚∗([𝐴 − 𝑡] ∩ 𝐸𝑐) 

        = 𝑚∗(𝐴 ∩ [𝐸 + 𝑡]) + 𝑚∗(𝐴 ∩ [𝐸 + 𝑡]𝑐). 

Therefore, 𝐸 + 𝑡 is measurable. 

 

Ex.    Show that if a set 𝐸 has positive outer measure then there is a bounded 

        subset of 𝐸 that also has positive measure. 

 

Proof:  Proof by contradiction.  

             Suppose every bounded subset of 𝐸 has measure 0.                                               

            Let 𝐼𝑘 = [𝑘, 𝑘 + 1] for 𝑘 ∈ ℤ.   

 

  Then 𝐸 = ⋃ (𝐸 ∩ 𝐼𝑘)𝑘∈ℤ  and each 𝐸 ∩ 𝐼𝑘  is bounded and hence      

            has 𝑚∗(𝐸 ∩ 𝐼𝑘) = 0.  

 

  By the subadditivity of 𝑚∗ we know: 

0 < 𝑚∗(𝐸) = 𝑚∗(⋃ (𝐸 ∩ 𝐼𝑘)𝑘∈ℤ ) ≤ ∑  𝑚∗(𝐸 ∩ 𝐼𝑘)𝑘∈ℤ = 0  

  which is a contradiction so 𝐸 must have a bounded subset of positive     
   measure. 


