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                        The Fundamental Theorem of Calculus 

 

We saw earlier that if 𝑓 is a continuous function on [𝑎, 𝑏] then 

                          ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 = 𝐴𝑣ℎ𝑓(𝑏) − 𝐴𝑣ℎ𝑓(𝑎)
𝑏

𝑎
 

where   𝐷𝑖𝑓𝑓ℎ𝑓(𝑥) =
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
    and    𝐴𝑣ℎ𝑓(𝑥) =

1

ℎ
∫ 𝑓

𝑥+ℎ

𝑥
.      

 

 

Since 𝑓 is continuous: 

lim
ℎ→0+

∫ 𝐷𝑖𝑓𝑓ℎ𝑓 = ∫ 𝑓′
𝑏

𝑎

𝑏

𝑎
    if the limit exists and 

lim
ℎ→0+

(𝐴𝑣ℎ𝑓(𝑏) − 𝐴𝑣ℎ𝑓(𝑎)) = 𝑓(𝑏) − 𝑓(𝑎).  

 

 

So we get the fundamental theorem of Calculus: 

∫ 𝑓′
𝑏

𝑎
= 𝑓(𝑏) − 𝑓(𝑎).  

 

 

 

The question is, is this statement still true even if 𝑓(𝑥) is not differentiable 

everywhere on (𝑎, 𝑏)?  If not, when is it true? 
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Theorem:  Let 𝑓 be absolutely continuous on the closed, bounded interval [𝑎, 𝑏]. 

Then 𝑓 is differentiable a.e. on [𝑎, 𝑏]  and 

                            ∫ 𝑓′
𝑏

𝑎
= 𝑓(𝑏) − 𝑓(𝑎). 

 

Proof:  Since 𝑓 is absolutely continuous, it is the difference of two increasing 

absolutely continuous function on [𝑎, 𝑏].  

 

Therefore, by Lebesgue’s theorem 𝑓 is differentiable a.e. on (𝑎, 𝑏).  

 

Thus {𝐷𝑖𝑓𝑓1

𝑛

𝑓} = {
𝑓(𝑥+

1
𝑛

)−𝑓(𝑥)

1
𝑛

} converges pointwise a.e. on (𝑎, 𝑏) to 𝑓′.     

 

In addition, since 𝑓 is absolutely continuous, {𝐷𝑖𝑓𝑓1
𝑛

𝑓} is uniformly integrable 

over [𝑎, 𝑏].  

 

Since  {𝐷𝑖𝑓𝑓1
𝑛

𝑓} is uniformly integrable over [𝑎, 𝑏] and 𝐷𝑖𝑓𝑓1

𝑛

𝑓 → 𝑓′ 

pointwise a.e. on (𝑎, 𝑏), the Vitali Convergence Theorem says 𝑓′ is integrable and 

                lim
𝑛→∞

∫ 𝐷𝑖𝑓𝑓1
𝑛

𝑓 = ∫ lim
𝑛→∞

𝐷𝑖𝑓𝑓1
𝑛

𝑓 = ∫ 𝑓′
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
.   

 

From first year Calculus we know that if 𝑓 is continuous then: 

lim
𝑛→∞

(𝐴𝑣1
𝑛

𝑓(𝑏) − 𝐴𝑣1
𝑛

𝑓(𝑎)) = lim
𝑛→∞

∫ 𝐷𝑖𝑓𝑓1
𝑛

𝑓
𝑏

𝑎

 

                                                       𝑓(𝑏) − 𝑓(𝑎) = ∫ 𝑓′
𝑏

𝑎
. 
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Def.  𝒇 is the indefinite integral of 𝒈 over [𝑎, 𝑏] if 𝑔 is Lebesgue integrable over 

[𝑎, 𝑏] and   𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑔
𝑥

𝑎
 for 𝑥 ∈ [𝑎, 𝑏]. 

 

Theorem:  A function 𝑓 on a closed, bounded interval [𝑎, 𝑏] is absolutely 

continuous on [𝑎, 𝑏] if and only if it is an indefinite integral over [𝑎, 𝑏]. 

 

Proof:  Suppose 𝑓 is absolutely continuous on [𝑎, 𝑏]. 

Then 𝑓 is absolutely continuous over [𝑎, 𝑥],  for 𝑥 ∈ [𝑎, 𝑏]. 

By the previous theorem :   𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑓′
𝑥

𝑎
. 

Thus 𝑓 is an indefinite integral over [𝑎, 𝑏]. 

 

Now assume 𝑓 is an indefinite integral over [𝑎, 𝑏]. 

Given disjoint open intervals {(𝑎𝑘, 𝑏𝑘)}𝑘=1
𝑛

 , let 𝐸 = ⋃ (𝑎𝑘,𝑛
𝑘=1 𝑏𝑘).       

 

Thus we have: 

∑ |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| = ∑ | ∫ 𝑔| ≤ ∑ ∫ |𝑔| = ∫ |𝑔|
𝐸

𝑏𝑘

𝑎𝑘

𝑛
𝑘=1

𝑏𝑘

𝑎𝑘

𝑛
𝑘=1

𝑛
𝑘=1 .  

 

Let 𝜖 > 0.   

 

 Since 𝑔 is integrable over [𝑎, 𝑏], we know there is a 𝛿 > 0  such that 

∫ |𝑔| < 𝜖
𝐸

 If 𝐸 ⊆ [𝑎, 𝑏] and 𝑚(𝐸) < 𝛿.  

 

Thus 𝑓 is absolutely continuous on [𝑎, 𝑏]. 
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Lemma: Let 𝑓 be integrable over the closed, bounded interval [𝑎, 𝑏].  Then 

𝑓(𝑥) = 0 a.e. on [𝑎, 𝑏] if and only if ∫ 𝑓 = 0
𝑥2

𝑥1
 for all [𝑥1, 𝑥2] ⊆ (𝑎, 𝑏). 

 

Proof:  If 𝑓(𝑥) = 0 a.e. on [𝑎, 𝑏] then clearly ∫ 𝑓 = 0
𝑥2

𝑥1
 for all [𝑥1, 𝑥2] ⊆ (𝑎, 𝑏).  

 

Now suppose ∫ 𝑓 = 0
𝑥2

𝑥1
 for all [𝑥1, 𝑥2] ⊆ (𝑎, 𝑏). 

Let’s first show that ∫ 𝑓 = 0
𝐸

 for all measurable sets 𝐸 ⊆ (𝑎, 𝑏).  

 

This is true for any open sets (because it is the countable disjoint union of open 

intervals) and 𝐺𝛿  sets (countable intersections of open sets), since any 𝐺𝛿  set can 

be represented by the intersection of a countable descending collection of open 

sets.   

 

Every measurable subset 𝐸 of [𝑎, 𝑏] is of the form 𝐺~𝐸0, where 𝐺 is a 𝐺𝛿  

subset of (𝑎, 𝑏) and 𝑚(𝐸0) = 0.   

Thus we have: 

∫ 𝑓 + ∫ 𝑓
𝐸0

= ∫ 𝑓
𝐺

= 0
𝐸

  and ∫ 𝑓 = 0
𝐸0

, since 𝑚(𝐸0) = 0.  

 

Thus ∫ 𝑓 = 0
𝐸

 for all measurable sets 𝐸 ⊆ (𝑎, 𝑏).  

 

Now define 𝐸+ = {𝑥 ∈ [𝑎, 𝑏]| 𝑓(𝑥) ≥ 0},     𝐸− = {𝑥 ∈ [𝑎, 𝑏]| 𝑓(𝑥) < 0}.  

 

∫ 𝑓+ = ∫ 𝑓
𝐸+ = 0

𝑏

𝑎
    and     ∫ 𝑓− = ∫ 𝑓

𝐸− = 0
𝑏

𝑎
.  

 

Thus 𝑓+ = 0 a.e. on 𝐸+ and 𝑓− = 0 a.e. on 𝐸−.  

Hence 𝑓 = 0 a.e. on [𝑎, 𝑏]. 
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Theorem:  Let 𝑓 be integrable over the closed, bounded interval [𝑎, 𝑏].  Then  
𝑑

𝑑𝑥
[∫ 𝑓] = 𝑓(𝑥)

𝑥

𝑎
 for almost all 𝑥 ∈ [𝑎, 𝑏]. 

 

Proof:  Let 𝐹(𝑥) = ∫ 𝑓
𝑥

𝑎
    for 𝑥 ∈ [𝑎, 𝑏]. 

𝐹 is absolutely continuous on [𝑎, 𝑏].   

 

Thus 𝐹 is differentiable a.e. on [𝑎, 𝑏] and 𝐹′ is integrable.  

 

To show that 𝐹′ − 𝑓 = 0 a.e. on [𝑎, 𝑏] we just need to show that 

∫ [𝐹′ − 𝑓] = 0
𝑥2

𝑥1
 for all [𝑥1, 𝑥2] ⊆ (𝑎, 𝑏)  (by the previous lemma).  

 

Since 𝐹 is absolutely continuous we know  ∫ 𝐹′ = 𝐹(𝑥2) − 𝐹(𝑥1)
𝑥2

𝑥1
.  

 

So 

∫ [𝐹′ − 𝑓] = ∫ 𝐹′ − ∫ 𝑓 = 𝐹(𝑥2) − 𝐹(𝑥1) − ∫ 𝑓
𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1
  

                       = ∫ 𝑓 − ∫ 𝑓 −
𝑥1

𝑎

𝑥2

𝑎 ∫ 𝑓
𝑥2

𝑥1
= 0.  

 

So  
𝑑

𝑑𝑥
[∫ 𝑓] = 𝑓(𝑥)

𝑥

𝑎
 for almost all 𝑥 ∈ [𝑎, 𝑏].      
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Ex.  Let 𝑓 be of bounded variation on [𝑎, 𝑏] and define 𝑣(𝑥) = 𝑇𝑉(𝑓[𝑎,𝑥]) for 

all 𝑥 ∈ [𝑎, 𝑏].  Show that |𝑓′| ≤ 𝑣′ a.e. on [𝑎, 𝑏] and ∫ |𝑓′| ≤ 𝑇𝑉(𝑓)
𝑏

𝑎
.  

Show this is an equality if 𝑓 is absolutely continuous. 

 

Take a partition 𝑃 = {𝑥1, 𝑥2},  𝑥1, 𝑥2 ∈ [𝑎, 𝑏].  Then 

             |𝑓(𝑥2) − 𝑓(𝑥1)| = 𝑉(𝑓, 𝑃) ≤ 𝑇𝑉(𝑓[𝑥1,𝑥2])  

                                                               = 𝑇𝑉(𝑓[𝑎,𝑥2]) − 𝑇𝑉(𝑓[𝑎,𝑥1]).  

 

So we have: 

              
|𝑓(𝑥2)−𝑓(𝑥1)|

𝑥2−𝑥1
≤

𝑇𝑉(𝑓[𝑎,𝑥2])−𝑇𝑉(𝑓[𝑎,𝑥1])

𝑥2−𝑥1
=

𝑣(𝑥2)−𝑣(𝑥1)

𝑥2−𝑥1
 .  

  

Since 𝑓 is of bounded variation, 𝑓′ exists a.e. on [𝑎, 𝑏].  It also means that 

𝑇𝑉(𝑓[𝑎,𝑥]) = 𝑣(𝑥) is absolutely continuous and so 𝑣′ exists a.e. on [𝑎, 𝑏].   

 

 Thus 

             lim
𝑥2→𝑥1

|𝑓(𝑥2)−𝑓(𝑥1)|

𝑥2−𝑥1
≤ lim

𝑥2→𝑥1

𝑣(𝑥2)−𝑣(𝑥1)

𝑥2−𝑥1
.  

 

 

So where these limits exist (a.e. on [𝑎, 𝑏]) and 

                          |𝑓′| ≤ 𝑣′.                        

 

Thus we have:   ∫ |𝑓′| ≤ ∫ 𝑣′ = 𝑣(𝑏) − 𝑣(𝑎)
𝑏

𝑎

𝑏

𝑎
  because 𝑣 is absolutely 

continuous.  
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Now 𝑣(𝑏) − 𝑣(𝑎) = 𝑇𝑉(𝑓) on [𝑎, 𝑏] so 

                            ∫ |𝑓′| ≤ 𝑇𝑉(𝑓)
𝑏

𝑎
. 

 

Now if 𝑓 is absolutely continuous on [𝑎, 𝑏] then   

                     ∫ 𝑓′ = 𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2

𝑥1
     for (𝑥1, 𝑥2) ⊆ (𝑎, 𝑏).  

 

𝑓 has bounded variation so for any partition 𝑃 of [𝑎, 𝑏]  

                 𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| = ∑ | ∫ 𝑓′|
𝑏𝑘

𝑎𝑘

𝑛
𝑘=1

𝑛
𝑘=1   

                                ≤ ∑ ∫ |𝑓′| = ∫ |𝑓′|
𝑏

𝑎

𝑏𝑘

𝑎𝑘

𝑛
𝑘=1 .  

 

Thus we have:    𝑇𝑉(𝑓) ≤ ∫ |𝑓′|
𝑏

𝑎
.  

 

 

However, in the first part we showed 𝑇𝑉(𝑓) ≥ ∫ |𝑓′|
𝑏

𝑎
.  

 

Thus if 𝑓 is absolutely continuous  𝑇𝑉(𝑓) = ∫ |𝑓′|
𝑏

𝑎
. 

 

 


