The Fundamental Theorem of Calculus

We saw earlier that if f is a continuous function on $[a, b]$ then

$$
\int_{a}^{b} Diff_{h}f = Av_{h}f(b) - Av_{h}f(a)
$$

where $Diff_{h}f(x) = \frac{f(x+h) - f(x)}{h}$ and $Av_{h}f(x) = \frac{1}{h} \int_{x}^{x+h} f$.

Since f is continuous:

lim $\lim_{h\to 0^+} \int_a^b Dif f_h f = \int_a^b f'$ α \boldsymbol{b} $\int_a^b Diff_hf = \int_a^b f'$ if the limit exists and lim $\lim_{h \to 0^+} (Av_h f(b) - Av_h f(a)) = f(b) - f(a).$

So we get the fundamental theorem of Calculus:

$$
\int_a^b f' = f(b) - f(a).
$$

The question is, is this statement still true even if $f(x)$ is not differentiable everywhere on (a, b) ? If not, when is it true?

Theorem: Let f be absolutely continuous on the closed, bounded interval $[a, b]$. Then f is differentiable a.e. on $[a, b]$ and

$$
\int_a^b f' = f(b) - f(a).
$$

Proof: Since f is absolutely continuous, it is the difference of two increasing absolutely continuous function on $[a, b]$.

Therefore, by Lebesgue's theorem f is differentiable a.e. on (a, b) .

Thus
$$
\left\{Diff_{\frac{1}{n}}f\right\} = \left\{\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}}\right\}
$$
 converges pointwise a.e. on (a, b) to f' .

In addition, since f is absolutely continuous, ${Diff}_1$ n f } is uniformly integrable over $[a, b]$.

Since $\{Diff_1$ \boldsymbol{n} $f\{$ is uniformly integrable over $[a, b]$ and $Diff_{\frac{1}{2}}$ \boldsymbol{n} $f \rightarrow f'$ pointwise a.e. on (a, b) , the Vitali Convergence Theorem says f' is integrable and

$$
\lim_{n\to\infty}\int_a^b Dif f_{\frac{1}{n}}f = \int_a^b \lim_{n\to\infty} Diff_{\frac{1}{n}}f = \int_a^b f'.
$$

From first year Calculus we know that if f is continuous then:

$$
\lim_{n \to \infty} \left(Av_{\frac{1}{n}}f(b) - Av_{\frac{1}{n}}f(a) \right) = \lim_{n \to \infty} \int_{a}^{b} Diff_{\frac{1}{n}}f
$$

$$
f(b) - f(a) = \int_{a}^{b} f'.
$$

Def. **f** is the indefinite integral of g over $[a, b]$ if g is Lebesgue integrable over $[a, b]$ and $f(x) = f(a) + \int_a^x g$ $\int_a^{\infty} g$ for $x \in [a, b].$

Theorem: A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof: Suppose f is absolutely continuous on $[a, b]$. Then f is absolutely continuous over $[a, x]$, for $x \in [a, b]$. By the previous theorem : $f(x) = f(a) + \int_a^x f'$ $\int_a^{\alpha} f'.$ Thus f is an indefinite integral over $[a, b]$.

Now assume f is an indefinite integral over $[a, b]$. Given disjoint open intervals $\{(a_k, b_k)\}_{k=1}^n$, let $E = \cup_{k=1}^n (a_k, b_k).$

Thus we have:

$$
\sum_{k=1}^n |f(b_k) - f(a_k)| = \sum_{k=1}^n |\int_{a_k}^{b_k} g| \le \sum_{k=1}^n \int_{a_k}^{b_k} |g| = \int_E |g|.
$$

Let $\epsilon > 0$.

Since g is integrable over $[a, b]$, we know there is a $\delta > 0$ such that $\int_E |g| < \epsilon$ if $E \subseteq [a, b]$ and $m(E) < \delta$.

Thus f is absolutely continuous on $[a, b]$.

Lemma: Let f be integrable over the closed, bounded interval $[a, b]$. Then $f(x) = 0$ a.e. on $[a, b]$ if and only if $\int_{x}^{x_2} f = 0$ $\int_{x_1}^{x_2} f = 0$ for all $[x_1, x_2] \subseteq (a, b).$

Proof: If
$$
f(x) = 0
$$
 a.e. on [a, b] then clearly $\int_{x_1}^{x_2} f = 0$ for all $[x_1, x_2] \subseteq (a, b)$.

Now suppose $\int_{r_1}^{x_2} f = 0$ $\int_{x_1}^{x_2} f = 0$ for all $[x_1, x_2] \subseteq (a, b).$

Let's first show that $\int_E\ f=0$ for all measurable sets $E\subseteq (a,b).$

This is true for any open sets (because it is the countable disjoint union of open intervals) and G_{δ} sets (countable intersections of open sets), since any G_{δ} set can be represented by the intersection of a countable descending collection of open sets.

Every measurable subset E of $[a, b]$ is of the form $G \sim E_0$, where G is a G_{δ} subset of (a, b) and $m(E_0) = 0$.

Thus we have:

$$
\int_E f + \int_{E_0} f = \int_G f = 0
$$
 and $\int_{E_0} f = 0$, since $m(E_0) = 0$.

Thus $\int_E\ f = 0$ for all measurable sets $E \subseteq (a, b).$

Now define $E^+ = \{x \in [a, b] | f(x) \ge 0\}$, $E^- = \{x \in [a, b] | f(x) < 0\}$.

$$
\int_a^b f^+ = \int_{E^+} f = 0 \text{ and } \int_a^b f^- = \int_{E^-} f = 0.
$$

Thus $f^+=0$ a.e. on E^+ and $f^-=0$ a.e. on $E^-.$ Hence $f = 0$ a.e. on $[a, b]$.

Theorem: Let f be integrable over the closed, bounded interval $[a, b]$. Then \boldsymbol{d} $\frac{d}{dx} \left[\int_{a}^{x} f \right] = f(x)$ $\begin{bmatrix} a \ a \end{bmatrix} = f(x)$ for almost all $x \in [a, b]$.

Proof: Let $F(x) = \int_{a}^{x} f(x)$ $\int_a^{\infty} f$ for $x \in [a, b].$

F is absolutely continuous on $[a, b]$.

Thus F is differentiable a.e. on $[a, b]$ and F' is integrable.

To show that $F^\prime - f = 0$ a.e. on $[a, b]$ we just need to show that $\int_{r_1}^{x_2} [F'-f] = 0$ $\binom{1}{x_1}$ $\binom{1}{x_1}$ \in $[1]$ \in $[1]$ \in $[1]$ \in $[a,b)$ $[1]$ \in $[a,b)$ $[1]$ \in $[1]$ \in $[1]$ \in $[a,b]$ $[1]$ \in

Since F is absolutely continuous we know $\int_{x_1}^{x_2} F' = F(x_2) - F(x_1)$ $x_1^{x_2} F' = F(x_2) - F(x_1).$

So

$$
\int_{x_1}^{x_2} [F' - f] = \int_{x_1}^{x_2} F' - \int_{x_1}^{x_2} f = F(x_2) - F(x_1) - \int_{x_1}^{x_2} f
$$

=
$$
\int_a^{x_2} f - \int_a^{x_1} f - \int_{x_1}^{x_2} f = 0.
$$

So \boldsymbol{d} $\frac{d}{dx} \left[\int_{a}^{x} f \right] = f(x)$ $\begin{bmatrix} a \ a \end{bmatrix} = f(x)$ for almost all $x \in [a, b]$.

Ex. Let f be of bounded variation on $[a, b]$ and define $v(x) = TV(f_{[a,x]})$ for all $x\in [a,b].$ Show that $|f'|\leq v'$ a.e. on $[a,b]$ and $\int_a^b |f'|\leq TV(f)$ $\binom{n}{a} |f'| \leq TV(f).$ Show this is an equality if f is absolutely continuous.

Take a partition $P = \{x_1, x_2\}$, $x_1, x_2 \in [a, b]$. Then $|f(x_2) - f(x_1)| = V(f, P) \le TV(f_{[x_1, x_2]})$ $= TV(f_{[a,x_2]}) - TV(f_{[a,x_1]}).$

So we have:

$$
\frac{|f(x_2)-f(x_1)|}{x_2-x_1} \le \frac{TV(f_{[a,x_2]})-TV(f_{[a,x_1]})}{x_2-x_1} = \frac{\nu(x_2)-\nu(x_1)}{x_2-x_1}.
$$

Since f is of bounded variation, f' exists a.e. on $[a, b]$. It also means that $TV(f_{[a,x]}) = v(x)$ is absolutely continuous and so v' exists a.e. on $[a, b]$.

Thus

$$
\lim_{x_2 \to x_1} \frac{|f(x_2) - f(x_1)|}{x_2 - x_1} \le \lim_{x_2 \to x_1} \frac{\nu(x_2) - \nu(x_1)}{x_2 - x_1}.
$$

So where these limits exist (a.e. on $[a, b]$) and

$$
|f'| \leq v'.
$$

Thus we have: $\int_a^b |f'| \leq \int_a^b v' = v(b) - v(a)$ α \boldsymbol{b} $\int_a^b |f'| \leq \int_a^b v' = v(b) - v(a)$ because v is absolutely continuous.

Now $v(b) - v(a) = TV(f)$ on $[a, b]$ so $\int_{a}^{b} |f'| \leq TV(f)$ $\binom{n}{a} |f'| \leq TV(f).$

Now if f is absolutely continuous on $[a, b]$ then

$$
\int_{x_1}^{x_2} f' = f(x_2) - f(x_1) \quad \text{for } (x_1, x_2) \subseteq (a, b).
$$

f has bounded variation so for any partition P of $[a, b]$

$$
V(f, P) = \sum_{k=1}^{n} |f(b_k) - f(a_k)| = \sum_{k=1}^{n} |\int_{a_k}^{b_k} f'|
$$

$$
\leq \sum_{k=1}^{n} \int_{a_k}^{b_k} |f'| = \int_{a}^{b} |f'|.
$$

Thus we have: $\mathit{TV}(f) \leq \int_a^b |f'|$ $\int_a^b |f'|.$

However, in the first part we showed $TV(f) \geq \int_a^b |f'|$ $\int_a^{\infty} |f'|.$

Thus if f is absolutely continuous $\mathit{TV}(f) = \int_a^b |f'|$ $\int_a^b |f'|.$