The Fundamental Theorem of Calculus

We saw earlier that if f is a continuous function on [a, b] then

$$\int_{a}^{b} Diff_{h}f = Av_{h}f(b) - Av_{h}f(a)$$

where $Diff_{h}f(x) = \frac{f(x+h) - f(x)}{h}$ and $Av_{h}f(x) = \frac{1}{h}\int_{x}^{x+h}f(a)$

Since f is continuous:

 $\lim_{h \to 0^+} \int_a^b Diff_h f = \int_a^b f' \quad \text{if the limit exists and}$ $\lim_{h \to 0^+} (Av_h f(b) - Av_h f(a)) = f(b) - f(a).$

So we get the fundamental theorem of Calculus:

$$\int_a^b f' = f(b) - f(a).$$

The question is, is this statement still true even if f(x) is not differentiable everywhere on (a, b)? If not, when is it true?

Theorem: Let f be absolutely continuous on the closed, bounded interval [a, b]. Then f is differentiable a.e. on [a, b] and

$$\int_a^b f' = f(b) - f(a).$$

Proof: Since f is absolutely continuous, it is the difference of two increasing absolutely continuous function on [a, b].

Therefore, by Lebesgue's theorem f is differentiable a.e. on (a, b).

Thus
$$\left\{ Diff_{\frac{1}{n}}f \right\} = \left\{ \frac{f\left(x+\frac{1}{n}\right)-f(x)}{\frac{1}{n}} \right\}$$
 converges pointwise a.e. on (a, b) to f' .

In addition, since f is absolutely continuous, $\left\{ Diff_{\frac{1}{n}}f \right\}$ is uniformly integrable over [a, b].

Since $\left\{ Diff_{\frac{1}{n}}f \right\}$ is uniformly integrable over [a, b] and $Diff_{\frac{1}{n}}f \to f'$ pointwise a.e. on (a, b), the Vitali Convergence Theorem says f' is integrable and $\lim_{a \to b} \int_{a}^{b} Diff_{1}f = \int_{a}^{b} \lim_{a \to b} Diff_{1}f = \int_{a}^{b} f'$

$$\lim_{n \to \infty} \int_a^s Diff_{\frac{1}{n}} f = \int_a^s \lim_{n \to \infty} Diff_{\frac{1}{n}} f = \int_a^s f'.$$

From first year Calculus we know that if f is continuous then:

$$\lim_{n \to \infty} \left(Av_{\frac{1}{n}} f(b) - Av_{\frac{1}{n}} f(a) \right) = \lim_{n \to \infty} \int_{a}^{b} Diff_{\frac{1}{n}} f(a)$$
$$f(b) - f(a) = \int_{a}^{b} f'.$$

Def. **f** is the indefinite integral of **g** over [a, b] if **g** is Lebesgue integrable over [a, b] and $f(x) = f(a) + \int_a^x g$ for $x \in [a, b]$.

Theorem: A function f on a closed, bounded interval [a, b] is absolutely continuous on [a, b] if and only if it is an indefinite integral over [a, b].

Proof: Suppose f is absolutely continuous on [a, b]. Then f is absolutely continuous over [a, x], for $x \in [a, b]$. By the previous theorem : $f(x) = f(a) + \int_a^x f'$. Thus f is an indefinite integral over [a, b].

Now assume f is an indefinite integral over [a, b]. Given disjoint open intervals $\{(a_k, b_k)\}_{k=1}^n$, let $E = \bigcup_{k=1}^n (a_k, b_k)$.

Thus we have:

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| = \sum_{k=1}^{n} |\int_{a_k}^{b_k} g| \le \sum_{k=1}^{n} \int_{a_k}^{b_k} |g| = \int_E |g|.$$

Let $\epsilon > 0$.

Since g is integrable over [a, b], we know there is a $\delta > 0$ such that $\int_{E} |g| < \epsilon$ If $E \subseteq [a, b]$ and $m(E) < \delta$.

Thus f is absolutely continuous on [a, b].

Lemma: Let f be integrable over the closed, bounded interval [a, b]. Then f(x) = 0 a.e. on [a, b] if and only if $\int_{x_1}^{x_2} f = 0$ for all $[x_1, x_2] \subseteq (a, b)$.

Proof: If
$$f(x) = 0$$
 a.e. on $[a, b]$ then clearly $\int_{x_1}^{x_2} f = 0$ for all $[x_1, x_2] \subseteq (a, b)$.

Now suppose $\int_{x_1}^{x_2} f = 0$ for all $[x_1, x_2] \subseteq (a, b)$.

Let's first show that $\int_E f = 0$ for all measurable sets $E \subseteq (a, b)$.

This is true for any open sets (because it is the countable disjoint union of open intervals) and G_{δ} sets (countable intersections of open sets), since any G_{δ} set can be represented by the intersection of a countable descending collection of open sets.

Every measurable subset E of [a, b] is of the form $G \sim E_0$, where G is a G_δ subset of (a, b) and $m(E_0) = 0$.

Thus we have:

$$\int_{E} f + \int_{E_0} f = \int_{G} f = 0$$
 and $\int_{E_0} f = 0$, since $m(E_0) = 0$.

Thus $\int_{E} f = 0$ for all measurable sets $E \subseteq (a, b)$.

Now define $E^+ = \{x \in [a, b] | f(x) \ge 0\}, \quad E^- = \{x \in [a, b] | f(x) < 0\}.$

$$\int_{a}^{b} f^{+} = \int_{E^{+}} f = 0$$
 and $\int_{a}^{b} f^{-} = \int_{E^{-}} f = 0.$

Thus $f^+ = 0$ a.e. on E^+ and $f^- = 0$ a.e. on E^- . Hence f = 0 a.e. on [a, b]. Theorem: Let f be integrable over the closed, bounded interval [a, b]. Then $\frac{d}{dx} \left[\int_{a}^{x} f \right] = f(x)$ for almost all $x \in [a, b]$.

Proof: Let $F(x) = \int_{a}^{x} f$ for $x \in [a, b]$.

F is absolutely continuous on [a, b].

Thus F is differentiable a.e. on [a, b] and F' is integrable.

To show that F' - f = 0 a.e. on [a, b] we just need to show that $\int_{x_1}^{x_2} [F' - f] = 0$ for all $[x_1, x_2] \subseteq (a, b)$ (by the previous lemma).

Since F is absolutely continuous we know $\int_{x_1}^{x_2} F' = F(x_2) - F(x_1)$.

So

$$\int_{x_1}^{x_2} [F' - f] = \int_{x_1}^{x_2} F' - \int_{x_1}^{x_2} f = F(x_2) - F(x_1) - \int_{x_1}^{x_2} f$$
$$= \int_a^{x_2} f - \int_a^{x_1} f - \int_{x_1}^{x_2} f = 0.$$

So $\frac{d}{dx} \left[\int_{a}^{x} f \right] = f(x)$ for almost all $x \in [a, b]$.

Ex. Let f be of bounded variation on [a, b] and define $v(x) = TV(f_{[a,x]})$ for all $x \in [a, b]$. Show that $|f'| \le v'$ a.e. on [a, b] and $\int_a^b |f'| \le TV(f)$. Show this is an equality if f is absolutely continuous.

Take a partition $P = \{x_1, x_2\}, x_1, x_2 \in [a, b]$. Then $|f(x_2) - f(x_1)| = V(f, P) \le TV(f_{[x_1, x_2]})$ $= TV(f_{[a, x_2]}) - TV(f_{[a, x_1]}).$

So we have:

$$\frac{|f(x_2) - f(x_1)|}{x_2 - x_1} \le \frac{TV(f_{[a, x_2]}) - TV(f_{[a, x_1]})}{x_2 - x_1} = \frac{v(x_2) - v(x_1)}{x_2 - x_1}$$

Since f is of bounded variation, f' exists a.e. on [a, b]. It also means that $TV(f_{[a,x]}) = v(x)$ is absolutely continuous and so v' exists a.e. on [a, b].

Thus

$$\lim_{x_2 \to x_1} \frac{|f(x_2) - f(x_1)|}{x_2 - x_1} \le \lim_{x_2 \to x_1} \frac{v(x_2) - v(x_1)}{x_2 - x_1}$$

So where these limits exist (a.e. on [a, b]) and

$$|f'| \le v'.$$

Thus we have: $\int_a^b |f'| \le \int_a^b v' = v(b) - v(a)$ because v is absolutely continuous.

Now v(b) - v(a) = TV(f) on [a, b] so $\int_{a}^{b} |f'| \le TV(f).$

Now if f is absolutely continuous on [a, b] then

$$\int_{x_1}^{x_2} f' = f(x_2) - f(x_1) \quad \text{for } (x_1, x_2) \subseteq (a, b).$$

f has bounded variation so for any partition P of [a, b]

$$V(f,P) = \sum_{k=1}^{n} |f(b_k) - f(a_k)| = \sum_{k=1}^{n} |\int_{a_k}^{b_k} f'|$$

$$\leq \sum_{k=1}^{n} \int_{a_k}^{b_k} |f'| = \int_{a}^{b} |f'|.$$

Thus we have: $TV(f) \leq \int_a^b |f'|$.

However, in the first part we showed $TV(f) \ge \int_a^b |f'|$.

Thus if f is absolutely continuous $TV(f) = \int_a^b |f'|$.