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                           Absolutely Continuous Functions 

 

Def.  A real valued function 𝑓 on a closed interval [𝑎, 𝑏] is said to be absolutely 

continuous on [𝑎, 𝑏] if for each 𝜖 > 0, there is a 𝛿 > 0 such that for every 

disjoint collection {(𝑎𝑘 , 𝑏𝑘)}𝑘=1
𝑛  of open intervals in (𝑎, 𝑏) if               

∑ |𝑏𝑘 − 𝑎𝑘| < 𝛿𝑛
𝑘=1   then  ∑ |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜖𝑛

𝑘=1 . 

 

Notice that if the finite collection is a single set we get the definition for uniform 

continuity.  Thus absolutely continuous implies uniformly continuous (but not the 

other way around). 

Ex.  The Cantor function 𝜑 is increasing and continuous on [0,1] (and hence 

uniformly continuous), but it is not absolutely continuous.  

 

In the 𝑛𝑡ℎ  stage of construction the Cantor set is a disjoint collection 

{[𝑐𝑘 , 𝑑𝑘]}𝑘=1
𝑘=2𝑛

 of 2𝑛 subintervals of [0,1] each of length 3−𝑛. 

For example 𝐴2 = [0,
1

9
] ∪ [

2

9
,

1

3
] ∪ [

2

3
,

7

9
] ∪ [

8

9
, 1]. 

𝜑 is constant on each of the intervals that comprise the complement in [0,1] of 

this collection of intervals. 

Since 𝜑 is increasing and 𝜑(1) − 𝜑(0) = 1;     

        ∑ |𝑑𝑘 − 𝑐𝑘| = (
2

3
)

𝑛
𝑘=2𝑛

𝑘=1   while   ∑ |𝜑(𝑑𝑘) − 𝜑(𝑐𝑘)| = 1𝑘=2𝑛

𝑘=1 .  

 

(Since 𝜑 takes on the values  {
1

2𝑛 ,
2

2𝑛 ,
3

2𝑛 , … ,
2𝑛−1

2𝑛 } on the 2𝑛 − 1 open 

intervals).  

But if 𝜖 = 1 there is no 𝛿 > 0 where if ∑ |𝑑𝑘 − 𝑐𝑘| < 𝛿𝑘=2𝑛

𝑘=1   then  

∑ |𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)| < 𝜖𝑘=2𝑛

𝑘=1 . 
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It’s not hard to show that linear combinations of absolutely continuous functions 

are also absolutely continuous, however, compositions of absolutely continuous 

functions need not be absolutely continuous. 

 

Prop.  If 𝑓 is Lipschitz on a closed, bounded interval [𝑎, 𝑏] then it is absolutely 

continuous. 

 

Proof:  Let 𝑐 > 0 be a Lipschitz constant for 𝑓 on [𝑎, 𝑏].  So 

                         |𝑓(𝑢) − 𝑓(𝑣)| ≤ 𝑐|𝑢 − 𝑣|   for all 𝑢, 𝑣 ∈ [𝑎, 𝑏].  

 

If we just take 𝛿 =
𝜖

𝑐
  then    

                    ∑ |𝑏𝑘 − 𝑎𝑘| < 𝛿𝑛
𝑘=1 =

𝜖

𝑐
  ⟹  𝑐 ∑ |𝑏𝑘 − 𝑎𝑘| < 𝜖𝑛

𝑘=1 .  

 

But since 𝑓  is Lipschitz with constant 𝑐: 

                 ∑ |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| ≤ 𝑐 ∑ |𝑏𝑘 − 𝑎𝑘| < 𝜖𝑛
𝑘=1

𝑛
𝑘=1 .  

 

Hence 𝑓 is absolutely continuous on [𝑎, 𝑏]. 

 

Note: there are functions that are absolutely continuous but are not Lipschitz.  For 

example 𝑓(𝑥) = √𝑥   for 0 ≤ 𝑥 ≤ 1. 
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Theorem:  Let the function 𝑓 be absolutely continuous on the closed, bounded 

interval [𝑎, 𝑏].  Then 𝑓 is the difference of increasing absolutely continuous 

functions and hence of bounded variation. 

 

Proof: First let’s show that 𝑓 is of bounded variation. 

Let 𝛿  correspond to 𝜖 = 1.  

 

Let 𝑃 be a partition of [𝑎, 𝑏] into 𝑁 closed intervals {[𝑐𝑘 , 𝑑𝑘]}𝑘=1
𝑁  each of 

length less than 𝛿.  

 

Since |𝑑𝑘 − 𝑐𝑘| < 𝛿 for each [𝑐𝑘 , 𝑑𝑘], any partition {𝛽0, 𝛽1, … , 𝛽𝑚} of 

[𝑐𝑘 , 𝑑𝑘] will have:     ∑ |𝑓(𝛽𝑗) − 𝑓(𝛽𝑗−1)| < 𝜖 = 1𝑚
𝑗=1 ,  that is 

𝑇𝑉(𝑓[𝑐𝑘,𝑑𝑘]) < 1 for 1 ≤ 𝑘 ≤ 𝑁.  

 

By the additivity of the total variation of disjoint intervals: 

𝑇𝑉(𝑓) = ∑ 𝑇𝑉(𝑓[𝑐𝑘,𝑑𝑘]) < 𝑁

𝑁

𝑘=1

. 

So 𝑓 is of bounded variation. 

 

Since 𝑓 is of bounded variation we can write: 

                 𝑓(𝑥) = [𝑓(𝑥) + 𝑇𝑉(𝑓[𝑎,𝑥])] − 𝑇𝑉(𝑓[𝑎,𝑥]). 

 

To show that 𝑓 is the difference of absolutely continuous functions we just need 

to show that 𝑇𝑉(𝑓[𝑎,𝑥]) is absolutely continuous. 
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Since 𝑓 is absolutely continuous given any 𝜖 > 0 choose 𝛿 > 0 such that if  

∑ |𝑑𝑘 − 𝑐𝑘| < 𝛿𝑛
𝑘=1   then  ∑ |𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)| <

𝜖

2
𝑛
𝑘=1  .      

 

Let 𝑃𝑘 be a partition of [𝑐𝑘 , 𝑑𝑘] for 1 ≤ 𝑘 ≤ 𝑛.  

 

Since ∑ |𝑑𝑘 − 𝑐𝑘| < 𝛿𝑛
𝑘=1   we have:  ∑ 𝑉(𝑓[𝑐𝑘,𝑑𝑘], 𝑃𝑘) <

𝜖

2
𝑛
𝑘=1  .     

 

              

Now taking the supremum: 

                   ∑ 𝑇𝑉(𝑓[𝑐𝑘,𝑑𝑘]) ≤
𝜖

2
𝑛
𝑘=1 < 𝜖.  

 

Since 𝑇𝑉(𝑓[𝑎,𝑣]) − 𝑇𝑉(𝑓[𝑎,𝑢]) = 𝑇𝑉(𝑓[𝑢,𝑣])  for 𝑎 ≤ 𝑢 < 𝑣 ≤ 𝑏 

      𝑇𝑉(𝑓[𝑎,𝑑𝑘]) − 𝑇𝑉(𝑓[𝑎,𝑐𝑘]) = 𝑇𝑉(𝑓[𝑐𝑘,𝑑𝑘]).    

 

Hence if ∑ |𝑑𝑘 − 𝑐𝑘| < 𝛿𝑛
𝑘=1    

             ∑ |𝑛
𝑘=1 𝑇𝑉(𝑓[𝑎,𝑑𝑘]) − 𝑇𝑉(𝑓[𝑎,𝑐𝑘])| < 𝜖.  

 

So 𝑇𝑉(𝑓[𝑎,𝑥]) is absolutely continuous. 

 

Note:   Lipschitz⟹     absolutely continuous⟹    bounded variation.  

 

Ex.  𝑓(𝑥) = √𝑥 is absolutely continuous on [0,1], but not Lipschitz since 𝑓′(𝑥) 

is not bounded on [0,1]. 

 

Ex.  𝜑(𝑥), the Cantor function is not absolutely continuous on [0,1] but has 

bounded variation since it’s an increasing function. 
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Ex.  Prove that 𝑓(𝑥) = 𝑥2 is absolutely continuous on [−1,1]. 

 

𝑓′(𝑥) = 2𝑥 so on [−1,1],     |𝑓′(𝑥)| ≤ 2.  Thus 𝑓(𝑥) is Lipschitz 

 (with 𝑐 = 2) and thus absolutely continuous. 

 

Ex.  Prove 𝑓(𝑥) = 𝑥𝑐𝑜𝑠 (
𝜋

2𝑥
)     if  0 < 𝑥 ≤ 1 

                          = 0                     if 𝑥 = 0 

is not absolutely continuous on [0,1]. 

 

As we saw earlier, 𝑓(𝑥) is not of bounded variation on [0,1], thus it can’t be 

absolutely continuous. 

 

Theorem:  Let 𝑓 be continuous on the closed, bounded interval [𝑎, 𝑏].  Then 𝑓 is 

absolutely continuous on [𝑎, 𝑏] if and only if the family of divided difference 

functions {𝐷𝑖𝑓𝑓ℎ𝑓}0<ℎ≤1 is uniformly integrable over [𝑎, 𝑏]. 

 

Proof:  We will prove that if 𝑓 is absolutely continuous on [𝑎, 𝑏] then 

{𝐷𝑖𝑓𝑓ℎ𝑓}0<ℎ≤1 is uniformly integrable over [𝑎, 𝑏] (this is the statement that 

we will use later). 

From the preceding theorem we know that since 𝑓 is absolutely continuous on 

[𝑎, 𝑏] it can be written as the difference of two increasing absolutely continuous 

functions. 

Thus we can assume that 𝑓 is increasing. 
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To prove uniform integrability of {𝐷𝑖𝑓𝑓ℎ𝑓}0<ℎ≤1 we must show given any      

𝜖 > 0  there is a 𝛿 > 0 such that for each measurable subset 𝐸 of (𝑎, 𝑏) 

                   ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 < 𝜖
𝐸

  if  𝑚(𝐸) < 𝛿 and 0 ≤ ℎ ≤ 1. 

 

Earlier we had a theorem that said given a measurable set 𝐸 there exists a 𝐺𝛿  set 

𝐺 with 𝐸 ⊆ 𝐺 and 𝑚(𝐺~𝐸) = 0.  

 

But every 𝐺𝛿  is the intersection of a descending sequence of open sets.  

 

In addition, every open set is the disjoint union of a countable collection of open 

intervals.  

 

Therefore every open set is the union of an ascending sequence of open sets, 

each of which is the union of a finite disjoint collection of open intervals. 

 

Thus by the continuity of integration we just need to show: 

 ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 < 𝜖
𝐸

  if  𝑚(𝐸) < 𝛿 and 0 ≤ ℎ ≤ 1,  where 𝐸 = (⋃ (𝑐𝑘 , 𝑑𝑘
𝑛
𝑘=1 ).      

 

Choose 𝛿 > 0 such that: 

                           ∑ |𝑑𝑘 − 𝑐𝑘| < 𝛿𝑛
𝑘=1   implies  ∑ |𝑓(𝑑𝑘) − 𝑓(𝑐𝑘)| <

𝜖

2
𝑛
𝑘=1  .      

 

    ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 = ∫
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ

𝑣

𝑢

𝑣

𝑢
 

                        =
1

ℎ
[∫ 𝑓(𝑥 + ℎ) − ∫ 𝑓(𝑥)]

𝑣

𝑢

𝑣

𝑢
 

              Let 𝑤 = 𝑥 + ℎ 

                         =
1

ℎ
 [∫ 𝑓(𝑤) − ∫ 𝑓(𝑥)]

𝑣

𝑢

𝑣+ℎ

𝑢+ℎ
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                         =
1

ℎ
[∫ 𝑓 − ∫ 𝑓]

𝑢+ℎ

𝑢

𝑣+ℎ

𝑣
                                                                                       

                              

                                                                                              Let 𝑡 = 𝑥 − 𝑣;      Let 𝑡 = 𝑥 − 𝑢  

 

                         =
1

ℎ
[∫ (𝑓(𝑡 + 𝑣) − 𝑓(𝑡 + 𝑢))]

ℎ

0
  

 

                         =
1

ℎ
[∫ 𝑔(𝑡)];           𝑔(𝑡) = 𝑓(𝑡 + 𝑣) − 𝑓(𝑡 + 𝑢)

ℎ

0
. 

 

If {[𝑐𝑘 , 𝑑𝑘]}𝑘=1
𝑛  is disjoint then: 

             ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 =
1

ℎ
∫ 𝑔(𝑡)

ℎ

0𝐸
;   where 𝐸 = ⋃ (𝑐𝑘 , 𝑑𝑘

𝑛
𝑘=1 )   

               and 𝑔(𝑡) = ∑ |𝑓(𝑑𝑘 + 𝑡) − 𝑓(𝑐𝑘 + 𝑡)|,𝑛
𝑘=1   for 0 ≤ 𝑡 ≤ 1.        

 

If ∑ |𝑑𝑘 − 𝑐𝑘| < 𝛿𝑛
𝑘=1   then for 0 ≤ 𝑡 ≤ 1,   ∑ |(𝑑𝑘 + 𝑡) − (𝑐𝑘 + 𝑡)| < 𝛿𝑛

𝑘=1  

and therefore 𝑔(𝑡) <
𝜖

2
 .    

 

Thus:     ∫ 𝐷𝑖𝑓𝑓ℎ𝑓 =
1

ℎ
∫ 𝑔(𝑡)

ℎ

0𝐸
<

𝜖

2
 .  

 

Hence   ∫ 𝐷𝑖𝑓𝑓ℎ𝑓
𝐸

<
𝜖

2
     if  𝑚(𝐸) < 𝛿,   

                                               where 𝐸 = ⋃ (𝑐𝑘 , 𝑑𝑘
𝑛
𝑘=1 ) and 0 ≤ ℎ ≤ 1.       

                         

                     


