Absolutely Continuous Functions

Def. A real valued function f on a closed interval $[a, b]$ is said to be **absolutely continuous** on [a, b] if for each $\epsilon > 0$, there is a $\delta > 0$ such that for every disjoint collection $\{(a_k,b_k)\}_{k=1}^n$ of open intervals in (a,b) if $\sum_{k=1}^{n} |b_k - a_k| < \delta$ $\sum_{k=1}^n |b_k - a_k| < \delta$ then $\sum_{k=1}^n |f(b_k) - f(a_k)| < \epsilon$ $_{k=1}^{n}|f(b_{k})-f(a_{k})|<\epsilon.$

Notice that if the finite collection is a single set we get the definition for uniform continuity. Thus absolutely continuous implies uniformly continuous (but not the other way around).

Ex. The Cantor function φ is increasing and continuous on [0,1] (and hence uniformly continuous), but it is not absolutely continuous.

In the n^{th} stage of construction the Cantor set is a disjoint collection $\{[c_k, d_k]\}_{k=1}^{k=2^n}$ of 2^n subintervals of $[0,1]$ each of length $3^{-n}.$

For example $A_2=\Bigl[0,\frac{1}{9}\Bigr]$ $\frac{1}{9}$ U $\frac{2}{9}$ $\frac{2}{9}, \frac{1}{3}$ $\frac{1}{3}$ U $\frac{2}{3}$ $\frac{2}{3}, \frac{7}{9}$ $\left[\frac{7}{9}\right]$ U $\left[\frac{8}{9}\right]$ $\frac{8}{9}$, 1].

 φ is constant on each of the intervals that comprise the complement in [0,1] of this collection of intervals.

Since φ is increasing and $\varphi(1) - \varphi(0) = 1$;

$$
\sum_{k=1}^{k=2^n} |d_k - c_k| = \left(\frac{2}{3}\right)^n \text{ while } \sum_{k=1}^{k=2^n} |\varphi(d_k) - \varphi(c_k)| = 1.
$$

(Since φ takes on the values $\{\frac{1}{2},\}$ $rac{1}{2^n}, \frac{2}{2^n}$ $\frac{2}{2^n}, \frac{3}{2^n}$ $\frac{3}{2^n}, \ldots, \frac{2^n-1}{2^n}$ $\frac{-1}{2^n}$ on the $2^n - 1$ open intervals).

But if $\epsilon=1$ there is no $\delta>0$ where if $\sum_{k=1}^{k=2^n} \lvert d_k-c_k\rvert < \delta$ $\binom{k=2}{k=1}$ $|d_k - c_k| < \delta$ then $\sum_{k=1}^{k=2^n} |f(d_k) - f(c_k)| < \epsilon$ $_{k=1}^{k=2^{n}}|f(d_{k})-f(c_{k})|<\epsilon.$

It's not hard to show that linear combinations of absolutely continuous functions are also absolutely continuous, however, compositions of absolutely continuous functions need not be absolutely continuous.

Prop. If f is Lipschitz on a closed, bounded interval $[a, b]$ then it is absolutely continuous.

Proof: Let $c > 0$ be a Lipschitz constant for f on $[a, b]$. So

$$
|f(u) - f(v)| \le c|u - v| \quad \text{for all } u, v \in [a, b].
$$

If we just take $\delta = \frac{\epsilon}{a}$ $\frac{c}{c}$ then

$$
\sum_{k=1}^n |b_k - a_k| < \delta = \frac{\epsilon}{c} \implies c \sum_{k=1}^n |b_k - a_k| < \epsilon.
$$

But since f is Lipschitz with constant c :

$$
\sum_{k=1}^n |f(b_k) - f(a_k)| \le c \sum_{k=1}^n |b_k - a_k| < \epsilon.
$$

Hence f is absolutely continuous on $[a, b]$.

Note: there are functions that are absolutely continuous but are not Lipschitz. For example $f(x) = \sqrt{x}$ for $0 \le x \le 1$.

Theorem: Let the function f be absolutely continuous on the closed, bounded interval $[a, b]$. Then f is the difference of increasing absolutely continuous functions and hence of bounded variation.

Proof: First let's show that f is of bounded variation.

Let δ correspond to $\epsilon = 1$.

Let P be a partition of $[a, b]$ into N closed intervals $\{[\mathit{c}_k, d_k]\}_{k=1}^N$ each of length less than δ .

Since $| d_k - c_k | < \delta$ for each $[c_k, d_k]$, any partition $\{ {\beta}_0, {\beta}_1, ..., {\beta}_m \}$ of $[c_k, d_k]$ will have: $\sum_{j=1}^m \left|f(\beta_j) - f(\beta_{j-1})\right| < \epsilon = 1$ $\big\vert_{j=1}^m \big\vert f\big(\beta_j\big)-f\big(\beta_{j-1}\big) \big\vert < \epsilon=1$, that is $TV(f_{[c_k,d_k]}) < 1$ for $1 \leq k \leq N$.

By the additivity of the total variation of disjoint intervals:

$$
TV(f) = \sum_{k=1}^{N} TV(f_{[c_k, d_k]}) < N.
$$

So f is of bounded variation.

Since f is of bounded variation we can write:

$$
f(x) = [f(x) + TV(f_{[a,x]})] - TV(f_{[a,x]}).
$$

To show that f is the difference of absolutely continuous functions we just need to show that $TV(f_{[a,x]})$ is absolutely continuous.

Since f is absolutely continuous given any $\epsilon > 0$ choose $\delta > 0$ such that if $\sum_{k=1}^n |d_k - c_k| < \delta$ $\sum_{k=1}^n |d_k - c_k| < \delta$ then $\sum_{k=1}^n |f(d_k) - f(c_k)| < \frac{\epsilon}{2}$ 2 \boldsymbol{n} $_{k=1}^{n}|f(d_{k})-f(c_{k})|<\frac{1}{2}$.

Let P_k be a partition of $[c_k, d_k]$ for $1 \leq k \leq n$.

Since $\sum_{k=1}^{n} |d_k - c_k| < \delta$ $\sum_{k=1}^n |d_k - c_k| < \delta$ we have: $\sum_{k=1}^n V\big(f_{[c_k,d_k]},\ P_k\big) < \frac{\epsilon}{2}$ 2 \boldsymbol{n} $_{k=1}^{n}V(f_{[c_k,d_k]}, P_k) < \frac{c}{2}.$

Now taking the supremum:

$$
\sum_{k=1}^n TV(f_{[c_k,d_k]}) \leq \frac{\epsilon}{2} < \epsilon.
$$

Since
$$
TV(f_{[a,v]}) - TV(f_{[a,u]}) = TV(f_{[u,v]})
$$
 for $a \le u < v \le b$
\n
$$
TV(f_{[a,d_k]}) - TV(f_{[a,c_k]}) = TV(f_{[c_k,d_k]}).
$$

Hence if
$$
\sum_{k=1}^{n} |d_k - c_k| < \delta
$$

$$
\sum_{k=1}^{n} |TV(f_{[a,d_k]}) - TV(f_{[a,c_k]})| < \epsilon.
$$

So $TV(f_{[a,x]})$ is absolutely continuous.

Note: Lipschitz \implies absolutely continuous \implies bounded variation.

Ex. $f(x) = \sqrt{x}$ is absolutely continuous on [0,1], but not Lipschitz since $f'(x)$ is not bounded on $[0,1]$.

Ex. $\varphi(x)$, the Cantor function is not absolutely continuous on $[0,1]$ but has bounded variation since it's an increasing function.

Ex. Prove that $f(x) = x^2$ is absolutely continuous on $[-1,1]$.

 $f'(x) = 2x$ so on $[-1,1]$, $|f'(x)| \le 2$. Thus $f(x)$ is Lipschitz (with $c = 2$) and thus absolutely continuous.

Ex. Prove
$$
f(x) = x \cos\left(\frac{\pi}{2x}\right)
$$
 if $0 < x \le 1$
= 0 if $x = 0$

is not absolutely continuous on $[0,1]$.

As we saw earlier, $f(x)$ is not of bounded variation on [0,1], thus it can't be absolutely continuous.

Theorem: Let f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\{Diff_h f\}_{0\leq h\leq 1}$ is uniformly integrable over $[a, b]$.

Proof: We will prove that if f is absolutely continuous on $[a, b]$ then ${Diff_hf₀*<*_h = 1$ is uniformly integrable over $[a, b]$ (this is the statement that we will use later).

From the preceding theorem we know that since f is absolutely continuous on $[a, b]$ it can be written as the difference of two increasing absolutely continuous functions.

Thus we can assume that f is increasing.

To prove uniform integrability of $\{Diff_hf\}_{0\leq h\leq 1}$ we must show given any $\epsilon > 0$ there is a $\delta > 0$ such that for each measurable subset E of (a, b)

$$
\int_E\;Diff_h f < \epsilon\;\;\text{if}\;\;m(E) < \delta\;\text{and}\;0 \leq h \leq 1.
$$

Earlier we had a theorem that said given a measurable set E there exists a G_{δ} set G with $E \subseteq G$ and $m(G \sim E) = 0$.

But every G_{δ} is the intersection of a descending sequence of open sets.

In addition, every open set is the disjoint union of a countable collection of open intervals.

Therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a finite disjoint collection of open intervals.

Thus by the continuity of integration we just need to show:

$$
\int_E\; Diff_h f < \epsilon \text{ if } m(E) < \delta \text{ and } 0 \le h \le 1, \text{ where } E = (\bigcup_{k=1}^n (c_k, d_k)).
$$

Choose $\delta > 0$ such that:

$$
\sum_{k=1}^n |d_k - c_k| < \delta \text{ implies } \sum_{k=1}^n |f(d_k) - f(c_k)| < \frac{\epsilon}{2}.
$$

$$
\int_{u}^{v} Diff_{h}f = \int_{u}^{v} \frac{f(x+h) - f(x)}{h}
$$

$$
= \frac{1}{h} \left[\int_{u}^{v} f(x+h) - \int_{u}^{v} f(x) \right]
$$

$$
\text{Let } w = x + h
$$

$$
= \frac{1}{h} \left[\int_{u+h}^{v+h} f(w) - \int_{u}^{v} f(x) \right]
$$

$$
= \frac{1}{h} \left[\int_{v}^{v+h} f - \int_{u}^{u+h} f \right]
$$

Let $t = x - v$; Let $t = x - u$

$$
= \frac{1}{h} \left[\int_{0}^{h} (f(t+v) - f(t+u)) \right]
$$

$$
= \frac{1}{h} \left[\int_{0}^{h} g(t) \right]; \qquad g(t) = f(t+v) - f(t+u).
$$

If $\{ [c_k, d_k] \}_{k=1}^n$ is disjoint then:

$$
\int_{E} \; Diff_{h}f = \frac{1}{h} \int_{0}^{h} g(t); \text{ where } E = \bigcup_{k=1}^{n} (c_{k}, d_{k})
$$
\n
$$
\text{and } g(t) = \sum_{k=1}^{n} |f(d_{k} + t) - f(c_{k} + t)|, \text{ for } 0 \le t \le 1.
$$

If $\sum_{k=1}^n |d_k - c_k| < \delta$ $\sum_{k=1}^n |d_k - c_k| < \delta$ then for $0 \le t \le 1$, $\sum_{k=1}^n |(d_k + t) - (c_k + t)| < \delta$ $k=1$ and therefore $g(t) < \frac{\epsilon}{2}$ $rac{\epsilon}{2}$.

Thus: $\int_E\; Diff_h f=\frac{1}{h}$ $\frac{1}{h}\int_0^h g(t)$ \sum_{E} Diff_h $f = \frac{1}{h} \int_{0}^{h} g(t) < \frac{\epsilon}{2}$ $\frac{c}{2}$.

Hence $\int_E\; Diff_h f < \frac{\epsilon}{2}$ $\frac{e}{2}$ if $m(E) < \delta$, where $E \,=\, \bigcup_{k=1}^n (c_k, d_k)$ $_{k=1}^n(c_k, d_k)$ and $0 \leq h \leq 1$.