Absolutely Continuous Functions

Def. A real valued function f on a closed interval [a, b] is said to be **absolutely** continuous on [a, b] if for each $\epsilon > 0$, there is a $\delta > 0$ such that for every disjoint collection $\{(a_k, b_k)\}_{k=1}^n$ of open intervals in (a, b) if $\sum_{k=1}^n |b_k - a_k| < \delta$ then $\sum_{k=1}^n |f(b_k) - f(a_k)| < \epsilon$.

Notice that if the finite collection is a single set we get the definition for uniform continuity. Thus absolutely continuous implies uniformly continuous (but not the other way around).

Ex. The Cantor function φ is increasing and continuous on [0,1] (and hence uniformly continuous), but it is not absolutely continuous.

In the n^{th} stage of construction the Cantor set is a disjoint collection $\{[c_k, d_k]\}_{k=1}^{k=2^n}$ of 2^n subintervals of [0,1] each of length 3^{-n} .

For example $A_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$

 φ is constant on each of the intervals that comprise the complement in [0,1] of this collection of intervals.

Since φ is increasing and $\varphi(1) - \varphi(0) = 1$;

$$\sum_{k=1}^{k=2^{n}} |d_{k} - c_{k}| = \left(\frac{2}{3}\right)^{n} \text{ while } \sum_{k=1}^{k=2^{n}} |\varphi(d_{k}) - \varphi(c_{k})| = 1.$$

(Since φ takes on the values $\{\frac{1}{2^n}, \frac{2}{2^n}, \frac{3}{2^n}, \dots, \frac{2^{n-1}}{2^n}\}$ on the $2^n - 1$ open intervals).

But if $\epsilon = 1$ there is no $\delta > 0$ where if $\sum_{k=1}^{k=2^n} |d_k - c_k| < \delta$ then $\sum_{k=1}^{k=2^n} |f(d_k) - f(c_k)| < \epsilon$.

It's not hard to show that linear combinations of absolutely continuous functions are also absolutely continuous, however, compositions of absolutely continuous functions need not be absolutely continuous.

Prop. If f is Lipschitz on a closed, bounded interval [a, b] then it is absolutely continuous.

Proof: Let c > 0 be a Lipschitz constant for f on [a, b]. So

$$|f(u) - f(v)| \le c|u - v| \quad \text{for all } u, v \in [a, b].$$

If we just take $\delta = \frac{\epsilon}{c}$ then

$$\sum_{k=1}^{n} |b_k - a_k| < \delta = \frac{\epsilon}{c} \implies c \sum_{k=1}^{n} |b_k - a_k| < \epsilon.$$

But since f is Lipschitz with constant c:

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| \le c \sum_{k=1}^{n} |b_k - a_k| < \epsilon.$$

Hence f is absolutely continuous on [a, b].

Note: there are functions that are absolutely continuous but are not Lipschitz. For example $f(x) = \sqrt{x}$ for $0 \le x \le 1$.

Theorem: Let the function f be absolutely continuous on the closed, bounded interval [a, b]. Then f is the difference of increasing absolutely continuous functions and hence of bounded variation.

Proof: First let's show that f is of bounded variation.

Let δ correspond to $\epsilon = 1$.

Let *P* be a partition of [a, b] into *N* closed intervals $\{[c_k, d_k]\}_{k=1}^N$ each of length less than δ .

Since $|d_k - c_k| < \delta$ for each $[c_k, d_k]$, any partition $\{\beta_0, \beta_1, \dots, \beta_m\}$ of $[c_k, d_k]$ will have: $\sum_{j=1}^m |f(\beta_j) - f(\beta_{j-1})| < \epsilon = 1$, that is $TV(f_{[c_k, d_k]}) < 1$ for $1 \le k \le N$.

By the additivity of the total variation of disjoint intervals:

$$TV(f) = \sum_{k=1}^{N} TV(f_{[c_k, d_k]}) < N.$$

So f is of bounded variation.

Since f is of bounded variation we can write:

$$f(x) = \left[f(x) + TV(f_{[a,x]})\right] - TV(f_{[a,x]}).$$

To show that f is the difference of absolutely continuous functions we just need to show that $TV(f_{[a,x]})$ is absolutely continuous.

Since f is absolutely continuous given any $\epsilon > 0$ choose $\delta > 0$ such that if $\sum_{k=1}^{n} |d_k - c_k| < \delta$ then $\sum_{k=1}^{n} |f(d_k) - f(c_k)| < \frac{\epsilon}{2}$.

Let P_k be a partition of $[c_k, d_k]$ for $1 \le k \le n$.

Since
$$\sum_{k=1}^{n} |d_k - c_k| < \delta$$
 we have: $\sum_{k=1}^{n} V(f_{[c_k, d_k]}, P_k) < \frac{\epsilon}{2}$

Now taking the supremum:

$$\sum_{k=1}^{n} TV(f_{[c_k,d_k]}) \leq \frac{\epsilon}{2} < \epsilon.$$

Since
$$TV(f_{[a,v]}) - TV(f_{[a,u]}) = TV(f_{[u,v]})$$
 for $a \le u < v \le b$
 $TV(f_{[a,d_k]}) - TV(f_{[a,c_k]}) = TV(f_{[c_k,d_k]}).$

Hence if
$$\sum_{k=1}^{n} |d_k - c_k| < \delta$$

 $\sum_{k=1}^{n} |TV(f_{[a,d_k]}) - TV(f_{[a,c_k]})| < \epsilon.$

So $TV(f_{[a,x]})$ is absolutely continuous.

Note: Lipschitz \implies absolutely continuous \implies bounded variation.

Ex. $f(x) = \sqrt{x}$ is absolutely continuous on [0,1], but not Lipschitz since f'(x) is not bounded on [0,1].

Ex. $\varphi(x)$, the Cantor function is not absolutely continuous on [0,1] but has bounded variation since it's an increasing function.

Ex. Prove that $f(x) = x^2$ is absolutely continuous on [-1,1].

f'(x) = 2x so on [-1,1], $|f'(x)| \le 2$. Thus f(x) is Lipschitz (with c = 2) and thus absolutely continuous.

Ex. Prove
$$f(x) = x\cos\left(\frac{\pi}{2x}\right)$$
 if $0 < x \le 1$
= 0 if $x = 0$

is not absolutely continuous on [0,1].

As we saw earlier, f(x) is not of bounded variation on [0,1], thus it can't be absolutely continuous.

Theorem: Let f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{Diff_hf\}_{0 < h \le 1}$ is uniformly integrable over [a, b].

Proof: We will prove that if f is absolutely continuous on [a, b] then $\{Diff_hf\}_{0 \le h \le 1}$ is uniformly integrable over [a, b] (this is the statement that we will use later).

From the preceding theorem we know that since f is absolutely continuous on [a, b] it can be written as the difference of two increasing absolutely continuous functions.

Thus we can assume that f is increasing.

To prove uniform integrability of $\{Diff_hf\}_{0 \le h \le 1}$ we must show given any $\epsilon > 0$ there is a $\delta > 0$ such that for each measurable subset E of (a, b)

$$\int_E Diff_h f < \epsilon \text{ if } m(E) < \delta \text{ and } 0 \le h \le 1.$$

Earlier we had a theorem that said given a measurable set E there exists a G_{δ} set G with $E \subseteq G$ and $m(G \sim E) = 0$.

But every G_{δ} is the intersection of a descending sequence of open sets.

In addition, every open set is the disjoint union of a countable collection of open intervals.

Therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a finite disjoint collection of open intervals.

Thus by the continuity of integration we just need to show:

$$\int_E Diff_h f < \epsilon \text{ if } m(E) < \delta \text{ and } 0 \le h \le 1, \text{ where } E = (\bigcup_{k=1}^n (c_k, d_k).$$

Choose $\delta > 0$ such that:

$$\sum_{k=1}^{n} |d_k - c_k| < \delta \text{ implies } \sum_{k=1}^{n} |f(d_k) - f(c_k)| < \frac{\epsilon}{2}$$

$$\int_{u}^{v} Diff_{h}f = \int_{u}^{v} \frac{f(x+h) - f(x)}{h}$$
$$= \frac{1}{h} \left[\int_{u}^{v} f(x+h) - \int_{u}^{v} f(x) \right]$$
Let $w = x + h$

$$= \frac{1}{h} \left[\int_{u+h}^{v+h} f(w) - \int_{u}^{v} f(x) \right]$$

$$= \frac{1}{h} [\int_{v}^{v+h} f - \int_{u}^{u+h} f]$$

Let $t = x - v$; Let $t = x - u$
$$= \frac{1}{h} [\int_{0}^{h} (f(t+v) - f(t+u))]$$
$$= \frac{1}{h} [\int_{0}^{h} g(t)]; \qquad g(t) = f(t+v) - f(t+u).$$

If $\{[c_k, d_k]\}_{k=1}^n$ is disjoint then:

$$\int_{E} Diff_{h}f = \frac{1}{h} \int_{0}^{h} g(t); \text{ where } E = \bigcup_{k=1}^{n} (c_{k}, d_{k})$$

and $g(t) = \sum_{k=1}^{n} |f(d_{k} + t) - f(c_{k} + t)|, \text{ for } 0 \le t \le 1.$

If $\sum_{k=1}^{n} |d_k - c_k| < \delta$ then for $0 \le t \le 1$, $\sum_{k=1}^{n} |(d_k + t) - (c_k + t)| < \delta$ and therefore $g(t) < \frac{\epsilon}{2}$.

Thus: $\int_E Diff_h f = \frac{1}{h} \int_0^h g(t) < \frac{\epsilon}{2}$.

Hence $\int_E Diff_h f < \frac{\epsilon}{2}$ if $m(E) < \delta$, where $E = \bigcup_{k=1}^n (c_k, d_k)$ and $0 \le h \le 1$.