Functions of Bounded Variation

By Lebesgue's theorem we know that a monotonic function on an open interval is differentiable a.e.. Hence a function that is the difference of two increasing (or decreasing) functions is also differentiable a.e.. We now want to characterize the class of functions on a closed, bounded interval which are the difference of two increasing (or decreasing) functions.

Def. Let f be a real valued function defined on a closed, bounded interval $[a, b]$ and P a partition $\{x_0, x_1, x_2, ..., x_k\}$ of $[a, b]$. The **variation of f with respect** to P is defined as:

$$
V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|.
$$

The **total variation of f** on $[a, b]$ is defined as:

 $TV(f) = \sup\{V(f, P) | P \text{ a partition of } [a, b]\}.$

Def. A real valued function f on the closed, bounded interval $[a, b]$ is said to be of **bounded variation** if $TV(f) < \infty$.

Ex. If f is an increasing function on $[a, b]$, then f is of bounded variation and $TV(f) = f(b) - f(a).$

Given any partition P of $[a, b]$:

$$
V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|
$$

= $\sum_{i=1}^{k} (f(x_i) - f(x_{i-1})) = f(b) - f(a)$.

Thus $TV(f) = \sup$ \boldsymbol{P} $V(f, P) = f(b) - f(a).$

Ex. Let f be a Lipschitz function on $[a, b]$. Then f is of bounded variation on $[a, b]$ and $TV(f) \leq c(b - a)$ where C is the Lipschitz constant, $|f(u) - f(v)| \le c |u - v|$ for all $u, v \in [a, b]$.

Let
$$
P = \{x_0, x_1, x_2, ..., x_k\}
$$
 be any partition of [a, b]. Then:
\n
$$
V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})| \le \sum_{i=1}^{k} c|x_i - x_{i-1}| = c|b - a|.
$$

Thus $c | b - a |$ is an upper bound for $V(f, P)$ and $TV(f) \le c(b - a)$.

Ex. Define f on $[0,1]$ by

$$
f(x) = x\cos(\frac{\pi}{2x}) \quad \text{if } 0 < x \le 1
$$
\n
$$
= 0 \qquad \qquad \text{if } x = 0.
$$

 f is continuous on [0,1], and therefore bounded, but does not have

bounded variation.

If we take the partition: $P_n = \{0, \frac{1}{2n}\}$ $\frac{1}{2n}, \frac{1}{2n}$ $\frac{1}{2n-1}, \frac{1}{2n}$ $\frac{1}{2n-2}, \ldots, \frac{1}{3}$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}$, 1} of $[0,1]$

$$
f(x_0) = 0
$$

\n
$$
f(x_1) = \frac{1}{2n} \cos\left(\frac{\pi}{2\left(\frac{1}{2n}\right)}\right) = \frac{1}{2n} \cos(n\pi) = \pm \frac{1}{2n}
$$

\n
$$
f(x_2) = \frac{1}{2n-1} \cos\left(\frac{\pi}{2\left(\frac{1}{2n-1}\right)}\right) = \frac{1}{2n-1} \cos\left(\frac{2n-1}{2}\pi\right) = 0
$$

\n
$$
f(x_3) = \frac{1}{2n-2} \cos\left(\frac{\pi}{2\left(\frac{1}{2n-2}\right)}\right) = \frac{1}{2n-2} \cos\left(\frac{2n-2}{2}\pi\right) = \pm \frac{1}{2n-2}
$$

\n
$$
f(x_4) = \frac{1}{2n-3} \cos\left(\frac{2n-3}{2}\pi\right) = 0
$$

\n
$$
\vdots
$$

So
$$
|f(x_1) - f(x_0)| = \frac{1}{2n}
$$

\n $|f(x_2) - f(x_1)| = \frac{1}{2n}$
\n $|f(x_3) - f(x_2)| = \frac{1}{2n-2}$
\n $|f(x_4) - f(x_3)| = \frac{1}{2n-2}$; etc.

Thus $V(f, P_n) = 1 + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3} + \cdots + \frac{1}{n}$ $\frac{1}{n}$; which diverges as n goes to ∞ . So f is not of bounded variation.

Ex. Notice that if f is $\mathcal{C}^1(a,b)$ (i.e. $f'(x)$ is continuous on (a,b)) and continous on $[a, b]$, then for any partition $P = {x_0, x_1, x_2, ..., x_k}$:

$$
f(x_i) - f(x_{i-1}) = \int_{x_{i-1}}^{x_i} f'
$$

by the fundamental theorem of Calculus.

Thus we have:

$$
|f(x_i) - f(x_{i-1})| = |\int_{x_{i-1}}^{x_i} f'| \le \int_{x_{i-1}}^{x_i} |f'|.
$$

So
$$
\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \leq \int_{a}^{b} |f'|.
$$

Thus $TV(f) \leq \int_a^b |f'|$ $\frac{d}{d}$ $|f'|$, and f is of bounded variation as long as $\int_a^b |f'|$ $\int_a^b |f'| < \infty$. Notice if $c \in [a, b]$ and c is not one of the endpoints of a partition P, we can create a refinement P' of P by adding c .

Then by the triangle inequality: $V(f, P) \leq V(f, P')$. Here's why.

The triangle inequality says $|a + b| \le |a| + |b|$ for all $a, b \in \mathbb{R}$.

$$
|f(x_i) - f(x_{i-1})| \le |f(x_i) - f(c)| + |f(c) - f(x_{i-1})|
$$

where
$$
a = f(x_i) - f(c)
$$
, $b = f(c) - f(x_{i-1})$
 $a + b = f(x_i) - f(x_{i-1})$.

Thus $TV(f)$ can be calculated as the supremum of $V(f, P)$ over all partitions containing c . So if a partition P includes c , we can break P up into a partition of $[a, c]$ and $[c, b]$ so that :

$$
V(f_{[a,b]}, P) = V(f_{[a,c]}, P) + V(f_{[c,b]}, P).
$$

By taking the supremum we get:

$$
TV(f_{[a,b]}) = TV(f_{[a,c]}) + TV(f_{[c,b]}).
$$

So if f is of bounded variation on $[a, b]$ then:

$$
TV(f_{[a,v]}) = TV(f_{[a,u]}) + TV(f_{[u,v]}) \quad \text{for } a \le u < v \le b.
$$

Thus we have:

$$
TV(f_{[a,v]}) - TV(f_{[a,u]}) = TV(f_{[u,v]}) \ge 0 \quad \text{for } a \le u < v \le b.
$$

So $g(x) = TV(f_{[a,x]})$ is an increasing function on $[a, b]$.

 \boldsymbol{g} is called the **total variation function for** \boldsymbol{f} .

Notice that if $P = \{u, v\}$ then:

$$
f(u) - f(v) \le |f(u) - f(v)| = V(f_{[u,v]}, P) \le TV(f_{[u,v]})
$$

= TV(f_{[a,v]}) - TV(f_{[a,u]}).

Thus we have:

$$
f(v) + TV(f_{[a,v]}) \ge f(u) + TV(f_{[a,u]}) \quad \text{for } a \le u < v \le b.
$$
\n
$$
\text{So } h(x) = f(x) + TV(f_{[a,x]}) \text{ is an increasing function on } [a, b].
$$

Thus we have shown:

Lemma: Let f be of bounded variation on a closed, bounded interval $[a, b]$. Then f can be written as the difference of two increasing functions on $[a, b]$: $f(x) = [f(x) + TV(f_{[a,x]})] - TV(f_{[a,x]}).$

Jordan's Theorem: A function f is of bounded variation on a closed, bounded interval $[a, b]$ if and only if it is the difference of two increasing function on $[a, b]$.

Proof: The previous lemma says if f is of bounded variation on $[a, b]$ then it can be written as the difference of two increasing functions on $[a, b]$.

Now suppose $f = g - h$ on $[a, b]$, where g, h are increasing on $[a, b]$.

Let's show that f is of bounded variation.

Let P be a partition $\{x_0, x_1, x_2, ..., x_k\}$ of $[a, b]$.

$$
V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|
$$

= $\sum_{i=1}^{k} |(g(x_i) - g(x_{i-1})) + (h(x_{i-1}) - h(x_i))|$
 $\leq \sum_{i=1}^{k} |(g(x_i) - g(x_{i-1}))| + \sum_{i=1}^{k} |(h(x_{i-1}) - h(x_i))|$
= $|g(b) - g(a)| + |h(b) - h(a)| < \infty$.

So $TV(f) < \infty$.

We call $f(x) = [f(x) + TV(f_{[a,x]})] - TV(f_{[a,x]})$ the **Jordan Decomposition** of f.

Corollary: If f is a function of bounded variation on a closed, bounded interval $[a, b]$, then it is differentiable a.e. on (a, b) and f' is integrable over $[a, b]$.

Proof: Since f is the difference of two increasing function on $[a, b]$, it is differentiable a.e. by Lebesgue's theorem.

A corollary to Lebesgue's theorem is that if f is increasing on $[a, b]$ then f' is integrable over $[a, b]$.

Thus if $f = g - h$, g , h increasing then g' , h' are integrable over $\left[a,b\right]$ and hence so is f' .