
1 
 

 

                              Functions of Bounded Variation 

 

By Lebesgue’s theorem we know that a monotonic function on an open interval is 

differentiable a.e..   Hence a function that is the difference of two increasing (or 

decreasing) functions is also differentiable a.e..  We now want to characterize the 

class of functions on a closed, bounded interval which are the difference of two 

increasing (or decreasing) functions. 

 

Def.  Let 𝑓 be a real valued function defined on a closed, bounded interval [𝑎, 𝑏] 

and 𝑃 a partition {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘} of [𝑎, 𝑏].  The variation of 𝒇 with respect 

to 𝑷 is defined as: 

                           𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1 . 

 

 

 

 

 

 

 

 

 

The total variation of 𝒇 on [𝑎, 𝑏] is defined as: 

                           𝑇𝑉(𝑓) = sup{𝑉(𝑓, 𝑃)|  𝑃 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]} . 

 

 𝑦 = 𝑓(𝑥) 

𝑥𝑖−1                 𝑥𝑖       

Length=|𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| 
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Def.  A real valued function 𝑓 on the closed, bounded interval [𝑎, 𝑏] is said to be 

of bounded variation if 𝑇𝑉(𝑓) < ∞. 

 

Ex.  If 𝑓 is an increasing function on [𝑎, 𝑏], then 𝑓 is of bounded variation and 

𝑇𝑉(𝑓) = 𝑓(𝑏) − 𝑓(𝑎). 

 

Given any partition 𝑃 of [𝑎, 𝑏]: 

 𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1                                                                     

                = ∑ (𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)) = 𝑓(𝑏) − 𝑓(𝑎)𝑘
𝑖=1 . 

 

  Thus 𝑇𝑉(𝑓) = sup
𝑃

𝑉(𝑓, 𝑃) = 𝑓(𝑏) − 𝑓(𝑎). 

  

Ex.  Let 𝑓 be a Lipschitz function on [𝑎, 𝑏].  Then 𝑓 is of bounded variation on 

[𝑎, 𝑏] and 𝑇𝑉(𝑓) ≤ 𝑐(𝑏 − 𝑎) where c is the Lipschitz constant,              

|𝑓(𝑢) − 𝑓(𝑣)| ≤ 𝑐|𝑢 − 𝑣|  for all 𝑢, 𝑣 ∈ [𝑎, 𝑏]. 

 

Let 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘} be any partition of [𝑎, 𝑏]. Then: 

      𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1 ≤ ∑ 𝑐|𝑥𝑖 − 𝑥𝑖−1|𝑘

𝑖=1 = 𝑐|𝑏 − 𝑎|. 

 

Thus 𝑐|𝑏 − 𝑎| is an upper bound for 𝑉(𝑓, 𝑃) and 𝑇𝑉(𝑓) ≤ 𝑐(𝑏 − 𝑎). 
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Ex.  Define 𝑓 on [0,1] by 

             𝑓(𝑥) = 𝑥𝑐𝑜𝑠(
𝜋

2𝑥
)     if  0 < 𝑥 ≤ 1     

                       = 0                   if  𝑥 = 0. 

    𝑓 is continuous on [0,1], and therefore bounded, but does not have  

    bounded variation.     

 

If we take the partition:   𝑃𝑛 = {0,
1

2𝑛
,

1

2𝑛−1
,

1

2𝑛−2
, … ,

1

3
,

1

2
, 1}  of  [0,1] 

𝑓(𝑥0) = 0  

𝑓(𝑥1) =
1

2𝑛
cos (

𝜋

2(
1

2𝑛
)
) =

1
2𝑛

cos(𝑛𝜋) = ±
1

2𝑛
      

𝑓(𝑥2) =
1

2𝑛−1
cos (

𝜋

2(
1

2𝑛−1
)
) =

1

2𝑛−1
cos (

2𝑛−1

2
𝜋) = 0     

𝑓(𝑥3) =
1

2𝑛−2
cos (

𝜋

2(
1

2𝑛−2
)
) =

1

2𝑛−2
cos (

2𝑛−2

2
𝜋) = ±

1

2𝑛−2
     

𝑓(𝑥4) =
1

2𝑛−3
cos (

2𝑛−3

2
𝜋) = 0     

⋮  

𝑦 = 𝑥𝑐𝑜𝑠(
𝜋

2𝑥
)      

1 
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So   |𝑓(𝑥1) − 𝑓(𝑥0)| =
1

2𝑛
 

       |𝑓(𝑥2) − 𝑓(𝑥1)| = 
1

2𝑛
 

       |𝑓(𝑥3) − 𝑓(𝑥2)| =
1

2𝑛−2
  

       |𝑓(𝑥4) − 𝑓(𝑥3)| =
1

2𝑛−2
 ;    etc.  

 

Thus  𝑉(𝑓, 𝑃𝑛) = 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
 ;  which diverges as 𝑛 goes to ∞. 

So 𝑓 is not of bounded variation. 

 

Ex.  Notice that if 𝑓 is 𝐶1(𝑎, 𝑏) (i.e. 𝑓′(𝑥) is continuous on (𝑎, 𝑏)) and continous 

on [𝑎, 𝑏], then for any partition 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘}: 

                     𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1) = ∫ 𝑓′
𝑥𝑖

𝑥𝑖−1
 

by the fundamental theorem of Calculus.  

 

Thus we have: 

                    |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| = | ∫ 𝑓′| ≤ ∫ |𝑓′|
𝑥𝑖

𝑥𝑖−1

𝑥𝑖

𝑥𝑖−1
. 

 

So                              ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| ≤ ∫ |𝑓′|
𝑏

𝑎
𝑛
𝑖=1 . 

 

Thus  𝑇𝑉(𝑓) ≤ ∫ |𝑓′|
𝑏

𝑎
,  and 𝑓 is of bounded variation as long as ∫ |𝑓′|

𝑏

𝑎
< ∞. 
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Notice if 𝑐 ∈ [𝑎, 𝑏] and 𝑐 is not one of the endpoints of a partition 𝑃, we can 

create a refinement 𝑃′ of 𝑃 by adding 𝑐.   

 

Then by the triangle inequality:    𝑉(𝑓, 𝑃) ≤ 𝑉(𝑓, 𝑃′).  Here’s why.  

 

    The triangle inequality says |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|   for all 𝑎, 𝑏 ∈ ℝ. 

        |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| ≤ |𝑓(𝑥𝑖) − 𝑓(𝑐)| + |𝑓(𝑐) − 𝑓(𝑥𝑖−1)|  

 

         where 𝑎 = 𝑓(𝑥𝑖) − 𝑓(𝑐),       𝑏 = 𝑓(𝑐) − 𝑓(𝑥𝑖−1)     

                                    𝑎 + 𝑏 = 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1). 

 

Thus 𝑇𝑉(𝑓) can be calculated as the supremum of 𝑉(𝑓, 𝑃) over all partitions 

containing 𝑐.  So if a partition 𝑃 includes 𝑐, we can break 𝑃 up into a partition of 

[𝑎, 𝑐] and [𝑐, 𝑏] so that : 

                   𝑉(𝑓[𝑎,𝑏], 𝑃) = 𝑉(𝑓[𝑎,𝑐], 𝑃) + 𝑉(𝑓[𝑐,𝑏], 𝑃). 

By taking the supremum we get: 

                  𝑇𝑉(𝑓[𝑎,𝑏]) = 𝑇𝑉(𝑓[𝑎,𝑐]) + 𝑇𝑉(𝑓[𝑐,𝑏]). 

 

𝑥𝑖−1                      𝑐                         𝑥𝑖  

𝑦 = 𝑓(𝑥) 
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So if 𝑓 is of bounded variation on [𝑎, 𝑏] then: 

        𝑇𝑉(𝑓[𝑎,𝑣]) = 𝑇𝑉(𝑓[𝑎,𝑢]) + 𝑇𝑉(𝑓[𝑢,𝑣])    for 𝑎 ≤ 𝑢 < 𝑣 ≤ 𝑏.  

 

Thus we have: 

     𝑇𝑉(𝑓[𝑎,𝑣]) − 𝑇𝑉(𝑓[𝑎,𝑢]) = 𝑇𝑉(𝑓[𝑢,𝑣]) ≥ 0    for 𝑎 ≤ 𝑢 < 𝑣 ≤ 𝑏.   

 

So  𝑔(𝑥) = 𝑇𝑉(𝑓[𝑎,𝑥]) is an increasing function on [𝑎, 𝑏]. 

𝑔 is called the total variation function for 𝒇.  

 

Notice that if 𝑃 = {𝑢, 𝑣} then: 

    𝑓(𝑢) − 𝑓(𝑣) ≤ |𝑓(𝑢) − 𝑓(𝑣)| = 𝑉(𝑓[𝑢,𝑣], 𝑃) ≤ 𝑇𝑉(𝑓[𝑢,𝑣]) 

                                                            = 𝑇𝑉(𝑓[𝑎,𝑣]) − 𝑇𝑉(𝑓[𝑎,𝑢]).  

 

Thus we have: 

𝑓(𝑣) + 𝑇𝑉(𝑓[𝑎,𝑣]) ≥ 𝑓(𝑢) + 𝑇𝑉(𝑓[𝑎,𝑢])    for 𝑎 ≤ 𝑢 < 𝑣 ≤ 𝑏. 

So  ℎ(𝑥) = 𝑓(𝑥) + 𝑇𝑉(𝑓[𝑎,𝑥]) is an increasing function on [𝑎, 𝑏]. 

 

 

Thus we have shown: 

Lemma: Let 𝑓 be of bounded variation on a closed, bounded interval [𝑎, 𝑏].  

Then 𝑓 can be written as the difference of two increasing functions on [𝑎, 𝑏]:    

𝑓(𝑥) = [𝑓(𝑥) + 𝑇𝑉(𝑓[𝑎,𝑥])] − 𝑇𝑉(𝑓[𝑎,𝑥]). 
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Jordan’s Theorem:  A function 𝑓 is of bounded variation on a closed, bounded 

interval [𝑎, 𝑏] if and only if it is the difference of two increasing function on 

[𝑎, 𝑏]. 

 

 

Proof:  The previous lemma says if 𝑓 is of bounded variation on [𝑎, 𝑏] then it can 

be written as the difference of two increasing functions on [𝑎, 𝑏].  

 

 

Now suppose 𝑓 = 𝑔 − ℎ on [𝑎, 𝑏], where 𝑔, ℎ are increasing on [𝑎. 𝑏].  

 

Let’s show that 𝑓 is of bounded variation.  

 

Let  𝑃 be  a partition {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘} of [𝑎, 𝑏].   

   𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1  

                  = ∑ |(𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1)) + (ℎ(𝑥𝑖−1) − ℎ(𝑥𝑖))|𝑘
𝑖=1  

                  ≤ ∑ |(𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1))| + ∑ |(ℎ(𝑥𝑖−1) − ℎ(𝑥𝑖))|𝑘
𝑖=1

𝑘
𝑖=1  

                  = |𝑔(𝑏) − 𝑔(𝑎)| + |ℎ(𝑏) − ℎ(𝑎)| < ∞. 

So 𝑇𝑉(𝑓) < ∞. 

 

We call 𝑓(𝑥) = [𝑓(𝑥) + 𝑇𝑉(𝑓[𝑎,𝑥])] − 𝑇𝑉(𝑓[𝑎,𝑥])  the Jordan 

Decomposition of 𝑓. 
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Corollary:  If 𝑓 is a function of bounded variation on a closed, bounded interval 

[𝑎, 𝑏], then it is differentiable a.e. on (𝑎, 𝑏) and 𝑓′ is integrable over [𝑎, 𝑏]. 

 

Proof:  Since 𝑓 is the difference of two increasing function on [𝑎, 𝑏], it is 

differentiable a.e. by Lebesgue’s theorem.  

A corollary to Lebesgue’s theorem is that if 𝑓 is increasing on [𝑎, 𝑏] then 𝑓′ is 

integrable over [𝑎, 𝑏].   

Thus if 𝑓 = 𝑔 − ℎ,  𝑔, ℎ increasing then 𝑔′, ℎ′ are integrable over [𝑎. 𝑏] and 

hence so is 𝑓′. 


