Differentiability of Monotonic Functions

Def. A closed interval $[c, d]$ is said to be **nondegenerate** if $c < d$.

Def. A collection F of closed, bounded, nondegenerate intervals is called a Vitali **covering of a set E** if for each point $x \in E$ and $\epsilon > 0$, there is an interval $I \in F$ that contains x and has $l(I) < \epsilon$.

Ex. A Vitali covering of $[0,1]$.

Let $R = \{r_1, r_2, r_3, ...\}$ be the set of rational numbers in [0,1].

Let $I_{k,n} = [r_k - \frac{1}{n}]$ $\frac{1}{n}$, r_k + $\frac{1}{n}$ $\frac{1}{n}$.

Then $F=\{I_{k,n}\}_{k,n=1}^{k,n=\infty}$, is a Vitali covering of $[0,1].$

The Vitali Covering Lemma: Let E be a set of finite outer measure and F a collection of closed, bounded, nondegenerate intervals that is a Vitali covering of E . Then for each $\epsilon>0$ there is a finite disjoint subcollection $\{I_k\}_{k=1}^n$ of F for which $m^*(E \sim \bigcup_{k=1}^n I_k) < \epsilon$ $_{k=1}^{n} I_k$) < ϵ .

Let x be a point of the domain of a real valued function f .

Def. We define the **upper and lower derivative of** f at x by

$$
\overline{D}f(x) = \lim_{h \to 0} \left[\sup_{0 < |t| \le h} \frac{f(x+t) - f(x)}{t} \right]
$$
\n
$$
\underline{D}f(x) = \lim_{h \to 0} \left[\inf_{0 < |t| \le h} \frac{f(x+t) - f(x)}{t} \right].
$$

Notice that $\overline{D}f(x) \geq \underline{D}f(x)$.

If $\overline{D}f(x) = \underline{D}f(x)$ and is finite, we say **f** is differentiable at x and define $f'(x)$ to be the common value.

Ex. Let
$$
f(x) = 0
$$
 if $x \in \mathbb{Q}$

\n
$$
= 1 \quad \text{if } x \notin \mathbb{Q}.
$$
\n
$$
\overline{D}f(0) = \lim_{h \to 0} \left[\sup_{0 < |t| \le h} \frac{f(0+t) - f(0)}{t} \right] = \lim_{h \to 0} \left[\sup_{0 < |t| \le h} \frac{f(t)}{t} \right] = \infty
$$
\n
$$
\underline{D}f(0) = \lim_{h \to 0} \left[\inf_{0 < |t| \le h} \frac{f(0+t) - f(0)}{t} \right] = \lim_{h \to 0} \left[\inf_{0 < |t| \le h} \frac{f(t)}{t} \right] = -\infty.
$$
\nSince $\overline{D}f(0) \neq \underline{D}f(0)$, $f(x)$ does not have a derivative at $x = 0$.

If $f(x)$ is continuous on $[a, b]$, and differentiable on (a, b) , the Mean Value Theorem tells us that there is a $c \in (a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f'(c).
$$

If we know that $f'(x) \ge \alpha$ for all $a < x < b$ then

$$
\frac{f(b)-f(a)}{b-a} = f'(c) \ge \alpha \quad \text{or} \quad f(b) - f(a) \ge \alpha(b-a).
$$

We have the following generalization for increasing functions.

Lemma: Let f be an increasing function on the closed, bounded interval $[a, b]$. Then for each $\alpha > 0$

$$
m^*\{x \in (a,b)| \overline{D}f(x) \ge \alpha\} \le \frac{1}{\alpha}[f(b) - f(a)]
$$

and
$$
m^*\{x \in (a,b)| \overline{D}f(x) = \infty\} = 0.
$$

Proof: Let $\alpha > 0$.

Define $E_{\alpha} = \{x \in (a, b) | \overline{D}f(x) \ge \alpha\}.$

Choose $\alpha' \in (0, \alpha)$.

Let F be a collection of closed, bounded intervals $[c, d]$ contained in (a, b) for which: $f(d) - f(c) \ge \alpha'(d - c).$

Since $\overline{D}f(x) \ge \alpha$ on E_{α} , F is a Vitali covering of E_{α} .

By the Vitali covering lemma there is a finite, disjoint subcollection $\{[\mathit{c}_k, d_k]\}_{k=1}^n$ of F for which

$$
m^*(E_{\alpha} \sim \bigcup_{k=1}^n [c_k, d_k] \} < \epsilon.
$$

Since
$$
E_{\alpha} \subseteq (\bigcup_{k=1}^{n} [c_k, d_k]) \cup (E_{\alpha} \sim \bigcup_{k=1}^{n} [c_k, d_k])
$$
 we have
\n
$$
m^*(E_{\alpha}) \le \sum_{k=1}^{n} m^*([c_k, d_k]) + m^*(E_{\alpha} \sim \bigcup_{k=1}^{n} [c_k, d_k])
$$
\n
$$
< \sum_{k=1}^{n} (d_k - c_k) + \epsilon.
$$

But F is the set of $[c,d]$ with $f(d)-f(c)\geq \alpha'(d-c).$ So $m^*(E_\alpha) \leq \frac{1}{\alpha}$ $\frac{1}{\alpha'}[\sum_{k=1}^n(f(d_k)-f(c_k))] + \epsilon.$

However, f is increasing on $[a, b]$ and $\{[\mathit{c}_k, d_k]\}_{k=1}^n$ are disjoint so $\sum_{k=1}^{n} (f(d_k) - f(c_k)) \le f(b) - f(a).$

Thus for each $\epsilon > 0$ and $\alpha' \in (0, \alpha)$

$$
m^*(E_\alpha) \leq \frac{1}{\alpha'}[f(b) - f(a)] + \epsilon.
$$

Hence $m^*\{x\in (a,b)| \ \overline{D}f(x)\geq a\}\leq \frac{1}{\alpha}$ $\frac{1}{\alpha}[f(b) - f(a)].$

For each $n \in \mathbb{Z}^+$, $\{x \in (a, b)| \overline{D}f(x) = \infty\} \subseteq E_n$; therefore

$$
m^*\{x \in (a,b)| \ \overline{D}f(x) = \infty\} \le m^*(E_n) \le \frac{1}{n}(f(b) - f(a)).
$$

Thus
$$
m^*\{x \in (a, b) | \overline{D}f(x) = \infty\} = 0.
$$

Lebesgue's Theorem: If the function f is monotonic on the open interval (a, b) , then it is differentiable almost everywhere on (a, b) .

Proof: Assume f is increasing.

Also assume (a, b) is bounded. If it's not, express it as the union of ascending open, bounded intervals and use the continuity of measure.

The set of points where $\overline{D}f(x) > \underline{D}f(x)$ is

$$
\bigcup_{\alpha,\beta\in\mathbb{Q}}E_{\alpha,\beta}=\bigcup_{\alpha,\beta\in\mathbb{Q}}\{x\in(a,b)|\ \overline{D}f(x)>\alpha>\beta>\underline{D}f(x)\}\,.
$$

By countable subadditivity of outer measure we only need to prove the assertion for each $E_{\alpha,\beta}$.

Fix $\alpha, \beta \in \mathbb{Q}$ with $\alpha > \beta$, and let $E = E_{\alpha, \beta}$.

Let $\epsilon > 0$.

Choose an open set O for which: $E \subseteq O \subseteq (a, b)$ and $m^*(O) < m^*(E) + \epsilon$.

Let F be the collection of closed intervals $[c, d] \subseteq O$ with

$$
f(d) - f(c) < \beta(d - c).
$$

Since $\beta > \underline{D}f(x)$ on E, F is a Vitali covering of E.

The Vitali covering lemma says there is a finite disjoint subcollection $\left\{ [c_k, d_k] \right\}_{k=1}^n$ of F for which

$$
m^*(E \sim \bigcup_{k=1}^n [c_k, d_k] \} < \epsilon.
$$

Since $[c_k, d_k] \subseteq O$ for all $1 \leq k \leq n$

$$
\sum_{k=1}^{n} [f(d_k) - f(c_k)] < \beta \sum_{k=1}^{n} [(d_k) - (c_k)] \le \beta m^*(0) \le \beta (m^*(E) + \epsilon).
$$

From the preceding lemma applied to $[c_k, d_k]$:

$$
m^*(E \cap (c_k, d_k)) \leq \frac{1}{\alpha} [f(d_k) - f(c_k)].
$$

Since
$$
m^*(E \sim \bigcup_{k=1}^n [c_k, d_k]) < \epsilon
$$
, and
\n
$$
E = E \cap (\bigcup_{k=1}^n [c_k, d_k]) \cup (E \sim \bigcup_{k=1}^n [c_k, d_k]), \text{ we have:}
$$
\n
$$
m^*(E) < \sum_{k=1}^n m^*(E \cap (c_k, d_k)) + \epsilon \le \frac{1}{\alpha} \sum_{k=1}^n [f(d_k) - f(c_k)] + \epsilon.
$$

Now since
$$
\sum_{k=1}^{n} [f(d_k) - f(c_k)] \le \beta(m^*(E) + \epsilon)
$$
 we have:
\n
$$
m^*(E) \le \frac{1}{\alpha} \sum_{k=1}^{n} [f(d_k) - f(c_k)] + \epsilon
$$
\n
$$
\le \frac{\beta}{\alpha} m^*(E) + \frac{\epsilon}{\alpha} + \epsilon \quad \text{for all } \epsilon > 0.
$$

Therefore since $0 \leq m^*(E) < \infty$ and $\frac{\beta}{\alpha}$ α ≤ 1

$$
m^*(E)=0.
$$

Let f be integrable over the closed, bounded interval $[a, b]$. Extend f to take on the value $f(b)$ on $(b, b + 1]$.

For $0 < h \leq 1$ define the divided difference function, $Diff_hf$ and the average value function $Av_h f$ on $[a, b]$ by:

$$
Diff_h f(x) = \frac{f(x+h) - f(x)}{h} \text{ and } Av_h f(x) = \frac{1}{h} \int_x^{x+h} f.
$$

(Recall from first year calculus that the average value of a function $y = f(x)$ over an interval $[a, b]$ is given by: $f_{ave} = \frac{1}{b-1}$ $\frac{1}{b-a}\int_a^b f(x)dx$.

Notice that for $a \le u < v \le b$:

$$
\int_u^v Diff_h f = \int_u^v \frac{f(x+h) - f(x)}{h}
$$

$$
= \frac{1}{h} \left[\int_u^v f(x+h) - \int_u^v f(x) \right]
$$

Now let $w = x + h$

 $=\frac{1}{b}$

$$
= \frac{1}{h} \left[\int_{v}^{v+h} f - \int_{u}^{u+h} f \right]
$$

$$
= Av_h f(v) - Av_h f(u).
$$

This looks a lot like $\int_{u}^{v} f'(x) dx = f(v) - f(u)$ $\int_u^{\infty} f'(x) dx = f(v) - f(u)$, the fundamental theorem of Calculus.

Corollary: Let f be an increasing function on the closed, bounded interval $[a, b]$. Then $f'(x)$ is integrable over $[a, b]$ and

$$
\int_a^b f' \le f(b) - f(a).
$$

Proof: We can extend f to be increasing on $[a, b + 1]$ by $f(x) = f(b)$ for $b < x \leq b + 1$.

Since f is increasing, it is measurable and therefore $f(x+h)-f(x)$ \boldsymbol{h} is measurable.

Lebesgue's theorem says f' exists a.e. on (a, b) , thus $\{Diff_{\frac{1}{2}}$ \boldsymbol{n} $f(x)\}$ is a sequence of nonnegative measurable functions that converges pointwise a.e. on $[a, b]$ to f' .

By Fatou's lemma:

$$
\int_a^b f' \le \liminf \int_a^b Dif f_1 f(x) .
$$

Since $\int_u^v Dif f_h f = Av_h f(v) - Av_h f(u)$ $\int_u^{\infty} Diff_h f = Av_h f(v) - Av_h f(u)$ we have: $\int_{a}^{b} Diff_{\frac{1}{a}}$ \boldsymbol{n} \int_a^b Diff₁ $f(x)$ $\int_a^b Diff_{\frac{1}{x}}f(x) = Av_{\frac{1}{x}}$ \boldsymbol{n} $f(b) - Av_1$ \boldsymbol{n} $f(a)$ $=\frac{1}{11}$ $\frac{1}{n}$ $\int_{h}^{b+\frac{1}{n}} f$ \boldsymbol{n} $\frac{-(b+\frac{1}{n}}{b}f-\frac{1}{1/2})$ $\frac{1}{n}$ $\int_{a}^{a+\frac{1}{n}} f$ \boldsymbol{n} α $= f(b) - \frac{1}{16}$ $\frac{1}{1/n} \int_{a}^{a+\frac{1}{n}} f$ \boldsymbol{n} $\int_{a}^{a+\pi} f \text{ since } f(x) = f(b) \text{ for } b < x \leq b+1.$ So: $\int_{a}^{b} Diff_{\frac{1}{a}}$ \boldsymbol{n} $f(x) = f(b) - \frac{1}{1}$ $\frac{1}{n}$ $\int_{a}^{a+\frac{1}{n}} f \leq f(b) - f(a).$ \boldsymbol{n} α \boldsymbol{b} α

since f is increasing.

Thus we have:
$$
\lim_{n \to \infty} \sup \left[\int_a^b Diff_{\frac{1}{n}} f(x) \right] \le f(b) - f(a).
$$

Hence:

$$
\int_{a}^{b} f' \le \lim_{n \to \infty} \inf \left[\int_{a}^{b} Diff_{\frac{1}{n}} f(x) \right]
$$

$$
\le \lim_{n \to \infty} \sup \left[\int_{a}^{b} Diff_{\frac{1}{n}} f(x) \right] \le f(b) - f(a).
$$

Ex. The Cantor function, φ , is increasing and continuous on $[0,1]$. It also has the property that $\varphi(1) = 1$, $\varphi(0) = 0$, and $\varphi'(x) = 0$ a.e. on $[0,1]$.

Thus
$$
\int_0^1 \varphi'(x) = 0
$$
, but $\varphi(1) - \varphi(0) = 1$, so

$$
\int_0^1 \varphi'(x) < \varphi(1) - \varphi(0).
$$

Ex. Notice that the corollary to Lebesgue's theorem says that if f is increasing on $[a, b]$ then f' is integrable on $[a, b]$. If f is not increasing on $[a, b]$, f' may not be integrable even if f is continuous on $[a, b]$ and differentiable at every point but 1. For example:

$$
f(x) = x^2 \sin \frac{1}{x^2} \quad 0 < x \le 1
$$
\n
$$
= 0 \qquad x = 0 \, .
$$

Has a derivative everywhere but $x=0$, however, $\int_0^1 |f'|$ $\int_{0}^{1} |f'|$ is not finite so f' is not Lebesgue integrable.