Continuity and Monotonic Functions

If $f \colon \mathbb{R} \to \mathbb{R}$, f can have several types of discontinuities.

Ex. f(x) = x if $x \neq 0$ = 2 if x = 0.

In this case x = 0 is a **removable discontinuity**; $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) \neq f(0).$

Ex.
$$f(x) = x$$
 if $x < 0$
= $x + 2$ if $x > 0$

x = 0 is a jump discontinuity.

 $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$ exist but aren't equal.

Ex.
$$f(x) = \sin(\frac{1}{x})$$
 if $x \neq 0$
= 0 if $x = 0$

x = 0 is a discontinuity, but $\lim_{x \to 0^+} f(x)$ and $\lim_{x \to 0^-} f(x)$ don't exist.

Ex. f(x) = 0 if $x \in \mathbb{Q}$ = 1 if $x \notin \mathbb{Q}$

f(x) is discontinuous at every point and $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ don't exist anywhere.

Theorem: Let f be a monotonic function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

Proof: Assume f is increasing.

Let's assume (a, b) is bounded and f is increasing on [a, b].

Otherwise, express $(a, b) = \bigcup_{k=1}^{\infty} I_k = A$; where $I_{k+1} \supseteq I_k$; I_k open and bounded interval for all k and $\overline{I}_k \subseteq (a, b)$, and take the union of the discontinuities in each I_k .

For $x_0 \in (a, b)$ let

$$f(x_0^-) = \lim_{x \to x_0^-} f(x) = \sup\{f(x) \mid a < x < x_0\}$$

 $f(x_0^+) = \lim_{x \to x_0^+} f(x) = \inf\{f(x) \mid x_0 < x < b\}.$

Since f is increasing $f(x_0^-) \le f(x_0^+)$.

If f is discontinuous at x_0 then $f(x_0^-) < f(x_0^+)$, i.e. we have a jump discontinuity.

Define the jump interval by: $J(x_0) = \{y | f(x_0^-) < y < f(x_0^+)\}.$

Each jump interval is contained in the bounded interval [f(a), f(b)] since f is increasing.

Since f(b) - f(a) is finite, there can only be a finite number of jump intervals of length greater than $\frac{1}{n}$ for each $n \in \mathbb{Z}^+$.

Thus the set of discontinuities is a countable union of finite sets and hence countable.

Prop. Let *C* be a countable subset of (a, b). Then there is an increasing function on (a, b) that is continuous at $(a, b) \sim C$.

Proof: If $C = \{x_0, x_1, x_2, ..., x_n\}$ is finite then let f(x) be constant between the points and jump by 1 at the points.

If $C = \{x_k\}_{k=1}^{\infty}$ is countably infinite define f by:

$$f(x) = \sum_{\{n \mid x_n \le x\}} \frac{1}{2^n}$$
 for all $a < x < b$.

If a < u < v < b then:

$$f(v) - f(u) = \sum_{\{n \mid u < x_n \le v\}} \frac{1}{2^n} \ge 0.$$

Thus f is increasing and f has a jump of $\frac{1}{2^k}$ at x_k .

Now let's show that f is continuous at any point $y \in (a, b) \sim C$.

For any fixed n we can choose an interval I such that $x_0, \ldots, x_n \notin I$.

Thus we have for $x \in I$: $|f(x) - f(y)| < \sum_{i=n+1}^{\infty} \frac{1}{2^i} = \frac{1}{2^n}$.

So for any $\epsilon > 0$, simply choose n such that $\frac{1}{2^n} < \epsilon$.

Thus f is continuous at $y \in (a, b) \sim C$.