Lemma: Let E be a set of finite measure and $\delta > 0$. Then E is the disjoint union of a finite collection of sets, each of which has measure less than δ .

Proof: By the continuity of measure,

 lim $n\rightarrow\infty$ $m(E \sim [-n, n]) = m(\phi) = 0$ since if $E {\sim} [-n,n] = E \cap [-n,n]^c = E_n$ then $E_{n+1} \subseteq E_n$ and $m(E) < \infty$.

Choose $n_0 \in \mathbb{Z}^+$ for which, $m(E {\sim} [-n_0, n_0]) < \delta.$

Now choose a partition of $[-n_0,n_0]$ fine enough so $E\cap [-n_0,n_0]$ is the disjoint union of a finite collection of sets, each of which has measure less than δ .

Let $E_j = E \cap (a_{j-1}, a_j]$; with $m(E_j) < \delta$.

Then $E_1, ...$, E_m , $~E\!\sim\![-n_0, n_0]$ works.

Prop. Let f be a measurable function on E . If f is integrable over E , then for $\epsilon > 0$, there is a $\delta > 0$ for which

If $A\subseteq E$ is measurable and $m(A)<\delta$ then $\int_A|f|<\epsilon.$

Conversely, in the case $m(E) < \infty$, if for each $\epsilon > 0$, there is a $\delta > 0$ for which if $A\subseteq E$ is measurable and $m(A)<\delta$, then $\int_A|f|<\epsilon$ then f is integrable over E .

Proof: Let $f = f^+ - f^-$; and establish for f^+ and f^- , so assume f is non-negative. Assume f is integrable over E. Let $\epsilon > 0$.

By additivity over subdomains, for $a > 0$ we have:

$$
\int_{A} f = \int_{\{x \in A | f(x) < a\}} f + \int_{\{x \in A | f(x) \ge a\}} f
$$
\n
$$
\le a \cdot m(A) + \int_{\{x \in A | f(x) \ge a\}} f.
$$

Since $\infty > \int_E f \geq \int_A f$, we can choose a large enough that:

$$
\int_{\{x\in A|f(x)\geq a\}} f < \frac{\epsilon}{2}
$$

So, $\int_A f < a \cdot m(A) + \frac{\epsilon}{2}$ $\frac{c}{2}$.

Choose $\delta = \frac{\epsilon}{2}$ $\frac{\epsilon}{2a}$, then if $A \subseteq E$ and $m(A) < \delta = \frac{\epsilon}{2a}$ $\frac{c}{2a}$, then $\int_A\ f < a\left(\frac{\epsilon}{2\epsilon}\right)$ $\frac{\epsilon}{2a}$ + $\frac{\epsilon}{2}$ $\frac{\epsilon}{2} = \epsilon.$

Conversely, suppose $m(E) < \infty$ and that for each $\epsilon > 0$, there is a $\delta > 0$ for which, if $A \subseteq E$ is measurable and $m(A) < \delta$, then

$$
\int_A\|f\|<\epsilon\;.
$$

Let δ correspond to $\epsilon = 1$.

Since $m(E) < \infty$ according to the previous lemma we can write $E = \bigcup_{k=1}^{N} E_k$ $_{k=1}^{N}E_{k}$, disjoint sets of measure less than $\delta.$

Therefore, $\sum_{k=1}^{N}\int_{E_{k}}f$ $_{k=1}^N \int_{E_k} f < N$ since $\int_{E_k} f < 1$ for each k .

Thus $\int_E f = \sum_{k=1}^N \int_{E_k} f$ $\sum_{E}^{N} f = \sum_{k=1}^{N} \int_{E_{k}} f < N$ and f is integrable.

Note: if $m(E) = \infty$, then $f(x) = 1$ has $\int_A |f| < \epsilon$ if $\delta = \epsilon$, but f is not integrable over E .

Def. A family F of measurable functions on E is said to be **uniformly integrable** over E if for each $\epsilon > 0$, there is a $\delta > 0$ such that for each $f \in F$, if

 $A\subseteq E$ is measurable and $m(A)<\delta$, then $\int_A|f|<\epsilon.$

Ex. Let q be a non-negative integrable function over E . Define:

 $F = \{f | f$ is measurable and $|f| \leq g$ on $E\}.$

Then F is uniformly integrable. This follows from the previous proposition and that for any measurable subset $A \subseteq E$:

$$
\int_A |f| \le \int_A g
$$

Ex. Let $f_n(x) = n$ if $0 \le x \le \frac{1}{n}$ \boldsymbol{n} $= 0$ if $\frac{1}{n} \le x \le 1$. $\{f_n\}$ are not uniformly integrable over $[0,1]$ since if $\epsilon = \frac{1}{2}$

 $\frac{1}{2}$ then given any $\delta>0$ there exists an $n\in\mathbb{Z}^+$ such that $\frac{1}{n}<\delta$ and $\int_{[0,\frac{1}{n}]}f_n=1$ $\frac{1}{n}$ $f_n = 1$.

Prop. Let $\{f_k\}_{k=1}^n$ be a finite collection of functions, each of which is integrable over E . Then $\{f_k\}_{k=1}^n$ is uniformly integrable.

Proof: Let $\epsilon > 0$.

For $1 \leq k \leq n$ by the previous proposition there is a δ_k such that if $A \subseteq E$ is measurable and $m(A) < \delta_k$, then $\int_A |f_k| < \epsilon$.

Let $\delta = \min \{\delta_1, \dots, \delta_n\}$ then if $A \subseteq E$ is measurable and $m(A) < \delta$, then $\int_A |f_k| < \epsilon$ for all $1 \leq k \leq n$.

Prop. Assume E has finite measure. Let $\{f_n\}$ be uniformly integrable over E . If ${f_n} \rightarrow f$ pointwise a.e. on E , then f is integrable over E .

Proof: Let $\epsilon = 1$ and $\delta_0 > 0$ such that if $m(A) < \delta_0$ then

$$
\int_A |f_n| < \epsilon = 1.
$$

Since $m(E) < \infty$ we can express E as the disjoint union of a finite collection of measurable sets $\{E_k\}_{k=1}^N$ such that $m(E_k)<\delta_0$ for $1 \leq k \leq N$.

Thus, $\int_E\;|f_n|=\sum_{k=1}^N\int_{E_k}|f_n|$ $_{k=1}^N \int_{E_k} |f_n| < N.$

But by Fatou's lemma, $\quad \int_E \; |f| \leq liminf \int_E \; |f_n| < N.$

So, f is integrable over E .

Vitali Convergence Theorem: Let E be of finite measure. Suppose $\{f_n\}$ is uniformly integrable over E. If $f_n \to f$ pointwise a.e., then f is integrable over E and \lim $\lim_{n\to\infty} \int_E f_n = \int_E f.$

Proof: The previous proposition tells us f is integrable and hence is finite a.e.

We can assume $f_n \to f$ pointwise by excising the set of measure 0 where it doesn't.

Notice for any measurable subset $A \subseteq E$,

$$
\begin{aligned}\n\left| \int_E f_n - \int_E f \right| &= \left| \int_E (f_n - f) \right| \\
&\le \int_E |f_n - f| \\
&= \int_{E \sim A} |f_n - f| + \int_A |f_n - f| \\
&\left| \int_E f_n - \int_E f \right| \le \int_{E \sim A} |f_n - f| + \int_A |f_n| + \int_A |f|. \n\end{aligned}
$$

 ${f_n}$ uniformly integrable \Rightarrow there is a $\delta > 0$ such that if $m(A) < \delta$, then $\int_A |f_n| < \frac{\epsilon}{3}$ $\frac{c}{3}$.

By Fatou's Lemma: $\int_A |f| \leq liminf \int_A |f_n| < \frac{\epsilon}{3}$ $\frac{e}{3}$.

> Since f is real valued and $m(E) < \infty$, by Egoroff's Theorem there is a measurable subset $E_0 \subseteq E$ for which $m(E_0) < \delta$ and $f_n \to f$ uniformly on $E \sim E_0$.

Thus there exists N such that if $n \geq N$ then,

$$
|f_n - f| < \frac{\epsilon}{3m(E)} \quad \text{on } E \sim E_0.
$$

Now take $A = E_0$ and we get:

$$
\left| \int_E f_n - \int_E f \right| \le \left| \int_{E \sim E_0} f_n - f \right| + \int_{E_0} |f_n| + \int_{E_0} |f|
$$

$$
< \left(\frac{\epsilon}{3m(E)} \right) \left(m(E \sim E_0) \right) + \frac{\epsilon}{3} + \frac{\epsilon}{3} \le \epsilon.
$$

So lim $\lim_{n\to\infty} \int_E f_n = \int_E f.$

Theorem: Let E be of finite measure. Suppose $\{h_n\}$ is a sequence of non-negative integrable functions that converge pointwise a.e. to $h \equiv 0$. Then,

$$
\lim_{n\to\infty}\int_E h_n=0
$$
 if, and only if, $\{h_n\}$ is uniformly integrable.

Proof: If $\{h_n\}$ is uniformly integrable then by the Vitali convergence

theorem, lim $\lim_{n\to\infty}\int_E h_n=0.$

Now suppose lim $\lim_{n\to\infty}\int_E h_n=0.$

Let $\epsilon > 0$. We can find N such that if $n \geq N$ then $\int_E h_n < \epsilon$.

Since each $h_n \geq 0$ on E, if $A \subseteq E$ is measurable and $n \geq N$, then $\int_A h_n < \epsilon.$

According to an earlier proposition, a finite collection $\{h_n\}_{n=1}^{N-1}$ of integrable functions is uniformly integrable.

Thus given $\epsilon > 0$ there exists a $\delta > 0$ such that if $m(A) < \delta$ then $\int_{A} h_n < \epsilon, n = 1, ..., N - 1.$

Thus $\{h_n\}_{n=1}^\infty$ are uniformly integrable.