The Vitali Convergence Theorem- HW Problems

1. Let g be integrable on [a,b]. Prove

 $f(x) = \int_{a}^{x} g$ is continuous at each $x \in [a, b]$.

Hint: Use the fact that given $\epsilon > 0$ and any interval

[c, d], a < c < d < b, there exists a continuous function h, with $\int_{c}^{d} |g - h| < \epsilon$.

2. Let f be integrable over $(-\infty, \infty)$. Prove that

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\cos nx\,dx=0\,.$$

Hint: First prove this for f(x) a step function which vanishes outside

a closed and bounded interval. Now use the L^1 approximation

Theorem covered in the section called Continuity of Integration/ L^1 Approximations.

3. Suppose that f is integrable over E and h is a bounded measurable function on E. Prove that $h \cdot f$ is integrable over E.

4. Suppose that f is integrable over \mathbb{R} . Prove that the following statements are equivalent.

- a. f(x) = 0 a.e. on \mathbb{R}
- b. $\int_{\mathbb{R}} f \cdot h = 0$ for every bounded measurable function h on \mathbb{R} .
- c. $\int_B f = 0$ for every measurable set $B \subseteq \mathbb{R}$.
- d. $\int_U f = 0$ for every open set $U \subseteq \mathbb{R}$.