Continuity of Integration/ L^1 Approximations

Theorem (countable additivity of integration): Let f be integrable over E and $\{E_n\}_{n=1}^\infty$ a disjoint countable collection of measurable subsets of E with $\bigcup_{i=1}^{\infty} E_i = E$, then

$$
\int_E f = \sum_{n=1}^{\infty} \int_{E_n} f.
$$

Proof: Let $f_n = (f)(\chi_n)$ where χ_n is the characteristic function of the measurable set $\bigcup_{k=1}^n E_k$ $_{k=1}^n E_k$.

 f_n is measurable and $|f_n| \leq |f|$ on E.

Notice that $f_n \to f$ pointwise on E , so by the Lebesgue dominated convergence theorem $\lim_{n\to\infty} \int_E f_n = \int_E f.$

The set $\{E_n\}_{n=1}^\infty$ are disjoint so: $\int_{\bigcup_{k=1}^n E_k} f = \sum_{k=1}^n \int_{E_k} f$ \boldsymbol{n} $\bigcup_{k=1}^n E_k$ ^{$J - \Delta_{k=1}$} $k=1$.

Thus $\int_E\ f=\lim\limits_{n\to\infty}$ $\lim_{n\to\infty} \int_E f_n = \lim_{n\to\infty} \sum_{k=1}^n \int_{E_k} f$ $_{k=1}^{n} \int_{E_k} f = \sum_{n=1}^{\infty} \int_{E_n} f$ ∞ $\sum_{E} f_n = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{E_k} f = \sum_{n=1}^{\infty} \int_{E_n} f$.

Theorem: (continuity of integration): Let f be integrable over E .

- 1. If $\{E_n\}_{n=1}^\infty$ is an ascending countable collection of measurable subsets of E, then $\int_{\bigcup_{n=1}^{\infty} E_n} f = \lim_{n \to \infty} \int_{E_n} f$.
- 2. If ${E_n}_{n=1}^{\infty}$ is a descending countable collection of measurable subsets of E, then $\int_{\bigcap_{n=1}^{\infty} E_n} f = \lim_{n \to \infty} \int_{E_n} f$.

Proof: Follows from the countable additivity of integration and by taking the ascending sequence of sets and creating a disjoint collection of sets with the same union (see proof of the continuity of measure).

Theorem (L^1 Approximations): Let f be integrable over $\mathbb R$ and $\epsilon > 0$.

1. There is a simple function η on $\mathbb R$ which has finite support and

$$
\int_{\mathbb{R}}|f-\eta|<\epsilon.
$$

- 2. There is a step function s on $\mathbb R$ which vanished outside a closed, bounded interval and $\int_{\mathbb{R}} |f - s| < \epsilon$.
- 3. There is a continuous function g on $\mathbb R$ which vanishes outside a bounded set and $\int_{\mathbb{R}} |f - g| < \epsilon$.

Proof: If f is nonnegative and measurable on $\mathbb R$, then by the Simple Approximation Theorem there exists an increasing sequence of simple functions $\{\varphi_n\}$ with $|\varphi_n| \leq f$ and $\varphi_n \to f$ pointwise.

Let $g_n = \varphi_n(\chi_{[-n,n]})$, which is also a simple function.

Then ${g_n}$ are measurable, increasing, simple, have finite support and $g_n \to f$ pointwise because $\varphi_n \to f$ pointwise.

By the monotone convergence theorem: lim $\lim_{n\to\infty} \int_{\mathbb{R}} g_n = \int_{\mathbb{R}} f$,

Thus lim $\lim_{n\to\infty} \int_{\mathbb{R}} (f - g_n) = 0.$

Notice that $f - g_n \ge 0$ so $f - g_n = |f - g_n|$, so $\lim_{n \to \infty} \int_{\mathbb{R}} |f - g_n| = 0$.

Hence for all $\epsilon > 0$ there exists N such that if $n \geq N$ then

$$
\int_{\mathbb{R}}|f-g_n|<\epsilon.
$$

If f is not nonnegative, write $f=f^+-f^-$ and find simple functions g_n and $h_n\;$ that work for $\,f^+$ and f^- respectively. $\,l_n=g_n-h_n\,$ will then work for $f.$

To prove part 2, we only need to show that we can approximate a simple function on a bounded measurable set by step functions on a bounded measurable set.

Since every simple function is a linear combination of characteristic functions, we just need to show given χ_E , where E is bounded and measurable, we can find a step function such that $\int_{\mathbb{R}} |\chi_E - s| < \epsilon.$

Since E is measurable we can find a disjoint collection of open intervals $\{I_n\}_{n=1}^\infty$ such that $O=\bigcup_{k=1}^\infty I_k\supseteq E$ and $m(O{\sim}E)<\frac{\epsilon}{2}$ $\frac{e}{2}$.

Since O has finite measure, there is N such that $m(\cup_{k=N+1}^{\infty} I_k) < \frac{\epsilon}{2}$ 2 ∞ $_{k=N+1}^{\infty}I_{k})<\frac{\epsilon}{2}$.

Now let $\,s=\sum_{k=1}^{N}{\chi}_{I_{k}}\,$ $_{k=1}^{N} \chi_{I_{k}}$; a step function. So we have:

$$
\int_{\mathbb{R}} |\chi_E - s| \le \sum_{k=1}^N \int_{\mathbb{R}} |\chi_{E \cap I_k} - \chi_{I_k}| + \sum_{k=N+1}^{\infty} \int_{\mathbb{R}} |\chi_{E \cap I_k}|
$$

\n
$$
\le m(\bigcup_{k=1}^N I_k \sim E) + m(\bigcup_{k=N+1}^{\infty} I_k \cap E)
$$

\n
$$
\le m(\bigcirc E) + m(\bigcup_{k=N+1}^{\infty} I_k) < \epsilon.
$$

To prove part 3, it suffices to show that given a step function

$$
s = \sum_{k=1}^{n} \chi_{I_k}
$$
 we can find a continuous function g on \mathbb{R} such that\n
$$
\int_{\mathbb{R}} |s - g| < \epsilon.
$$

In fact, since the $\{I_k\}_{k=1}^n$ are disjoint, it's sufficient to do this for one open interval (a, b) .

Let
$$
g(x) = 1
$$
 if $a + \frac{\epsilon}{2} \le x \le b - \frac{\epsilon}{2}$

and linearly goes to 0 at a and b , and equals 0 if $x \notin [a, b]$. Then

$$
\int_{\mathbb{R}} |\chi_{[a,b]} - g| \leq m(a,a+\frac{\epsilon}{2}) + m\left(b-\frac{\epsilon}{2},b\right) = \epsilon.
$$

