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                    Continuity of Integration/𝐿1 Approximations 

 

Theorem (countable additivity of integration):  Let 𝑓 be integrable over 𝐸 and 

{𝐸𝑛}𝑛=1
∞  a disjoint countable collection of measurable subsets of 𝐸 with 

⋃ 𝐸𝑖
∞
𝑖=1 = 𝐸, then 

                                    ∫ 𝑓 = ∑ ∫ 𝑓
𝐸𝑛

∞
𝑛=1𝐸

. 

 

Proof:  Let   𝑓𝑛 = (𝑓)(𝜒𝑛)   where 𝜒𝑛 is the characteristic function of the 

measurable set ⋃ 𝐸𝑘
𝑛
𝑘=1 .  

 

𝑓𝑛 is measurable and |𝑓𝑛| ≤ |𝑓|   on 𝐸. 
 

Notice that 𝑓𝑛 → 𝑓 pointwise on 𝐸, so by the Lebesgue dominated convergence 

theorem         lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸𝐸

. 

 

The set {𝐸𝑛}𝑛=1
∞  are disjoint so:     ∫ 𝑓 = ∑ ∫ 𝑓

𝐸𝑘

𝑛
𝑘=1⋃ 𝐸𝑘

𝑛
𝑘=1

.   

 

Thus   ∫ 𝑓
𝐸

= lim
𝑛→∞

∫ 𝑓𝑛 = lim
𝑛→∞

∑ ∫ 𝑓
𝐸𝑘

𝑛
𝑘=1 = ∑ ∫ 𝑓

𝐸𝑛

∞
𝑛=1 .

𝐸
 

 

Theorem: (continuity of integration):  Let 𝑓 be integrable over 𝐸. 

1. If {𝐸𝑛}𝑛=1
∞  is an ascending countable collection of measurable subsets of 

𝐸, then          ∫ 𝑓 = lim
𝑛→∞

∫ 𝑓
𝐸𝑛⋃ 𝐸𝑛

∞
𝑛=1

. 

2. If {𝐸𝑛}𝑛=1
∞  is a descending countable collection of measurable subsets of 

𝐸, then          ∫ 𝑓 = lim
𝑛→∞

∫ 𝑓
𝐸𝑛⋂ 𝐸𝑛

∞
𝑛=1

. 
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Proof:  Follows from the countable additivity of integration and by taking the 

ascending sequence of sets and creating a disjoint collection of sets with the same 

union (see proof of the continuity of measure). 

 

Theorem (𝐿1 Approximations):  Let 𝑓 be integrable over ℝ and 𝜖 > 0. 

1. There is a simple function 𝜂 on ℝ which has finite support and 

                         ∫ |𝑓 − 𝜂| < 𝜖
ℝ

. 

2. There is a step function 𝑠 on ℝ which vanished outside a closed, bounded 

interval and    ∫ |𝑓 − 𝑠| < 𝜖
ℝ

. 

3. There is a continuous function 𝑔 on ℝ which vanishes outside a bounded 

set and       ∫ |𝑓 − 𝑔| < 𝜖
ℝ

. 

 

Proof:  If 𝑓 is nonnegative and measurable on ℝ, then by the Simple 

Approximation Theorem there exists an increasing sequence of simple functions 

{𝜑𝑛} with |𝜑𝑛| ≤ 𝑓  and 𝜑𝑛 → 𝑓 pointwise. 

Let 𝑔𝑛 = 𝜑𝑛(𝜒[−𝑛,𝑛]),  which is also a simple function. 

Then {𝑔𝑛} are measurable, increasing, simple, have finite support and 𝑔𝑛 → 𝑓 

pointwise because 𝜑𝑛 → 𝑓 pointwise. 

By the monotone convergence theorem:   lim
𝑛→∞

∫ 𝑔𝑛 = ∫ 𝑓
ℝℝ

, 

Thus lim
𝑛→∞

∫ (𝑓 − 𝑔𝑛) = 0
ℝ

. 

Notice that 𝑓 − 𝑔𝑛 ≥ 0 so 𝑓 − 𝑔𝑛 = |𝑓 − 𝑔𝑛|, so lim
𝑛→∞

∫ |𝑓 − 𝑔𝑛| = 0
ℝ

.  

 

Hence for all 𝜖 > 0 there exists 𝑁 such that if 𝑛 ≥ 𝑁 then 

                              ∫ |𝑓 − 𝑔𝑛| < 𝜖
ℝ

. 
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If 𝑓 is not nonnegative, write 𝑓 = 𝑓+ − 𝑓− and find simple functions 𝑔𝑛 and 

ℎ𝑛  that work for  𝑓+ and 𝑓− respectively.  𝑙𝑛 = 𝑔𝑛 − ℎ𝑛 will then work for 𝑓. 

 

 

To prove part 2, we only need to show that we can approximate a simple function 

on a bounded measurable set by step functions on a bounded measurable set.  

 

 

Since every simple function is a linear combination of characteristic functions, we 

just need to show given 𝜒𝐸, where 𝐸 is bounded and measurable, we can find a 

step function such that       ∫ |𝜒𝐸 − 𝑠| < 𝜖
ℝ

.  

 

 

Since 𝐸 is measurable we can find a disjoint collection of open intervals {𝐼𝑛}𝑛=1
∞  

such that 𝑂 = ⋃ 𝐼𝑘
∞
𝑘=1 ⊇ 𝐸 and 𝑚(𝑂~𝐸) <

𝜖

2
 .    

 

 

Since 𝑂 has finite measure, there is 𝑁 such that 𝑚(⋃ 𝐼𝑘) <
𝜖
2

∞
𝑘=𝑁+1  .  

 

 

Now let  𝑠 = ∑ 𝜒𝐼𝑘

𝑁
𝑘=1  ;  a step function.  So we have: 

∫ |𝜒𝐸 − 𝑠| ≤ ∑ ∫ |
ℝ

𝑁
𝑘=1ℝ

𝜒𝐸∩𝐼𝑘−𝜒𝐼𝑘
| + ∑ ∫ |

ℝ
∞
𝑘=𝑁+1 𝜒𝐸∩𝐼𝑘

|  

                     ≤ 𝑚(⋃ 𝐼𝑘~𝐸) + 𝑚(⋃ 𝐼𝑘 ∩ 𝐸)∞
𝑘=𝑁+1

𝑁
𝑘=1  

                     ≤ 𝑚(𝑂~𝐸) + 𝑚(⋃ 𝐼𝑘) < 𝜖∞
𝑘=𝑁+1  .  
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To prove part 3, it suffices to show that given a step function 

  𝑠 = ∑ 𝜒𝐼𝑘

𝑛
𝑘=1  we can find a continuous function 𝑔 on ℝ such that 

                          ∫ |𝑠 − 𝑔| < 𝜖
ℝ

. 

 

In fact, since the {𝐼𝑘}𝑘=1
𝑛  are disjoint, it’s sufficient to do this for one open 

interval (𝑎, 𝑏).  

 

Let 𝑔(𝑥) = 1         if    𝑎 +
𝜖

2
≤ 𝑥 ≤ 𝑏 −

𝜖

2
  

and linearly goes to 0 at 𝑎 and 𝑏, and equals 0 if 𝑥 ∉ [𝑎, 𝑏].  Then 

             ∫ |𝜒[𝑎,𝑏] − 𝑔| ≤ 𝑚(𝑎, 𝑎 +
ℝ

𝜖

2
) + 𝑚 (𝑏 −

𝜖

2
, 𝑏) = 𝜖.   

 

 

𝑎                                                      𝑏                         

1 
(𝑎 +

𝜖

2
, 1) (𝑏 −

𝜖

2
, 1) 

𝑦 = 𝑔(𝑥) 


