The General Lebesgue Integral

If f is an extended real valued function on E define:

$$
f^{+}(x) = \max \{ f(x), 0 \} \ge 0
$$

$$
f^{-}(x) = \max \{ -f(x), 0 \} \ge 0
$$

$$
f(x) = f^{+}(x) - f^{-}(x)
$$

Notice that f is measurable if and only if f^+ and f^- are measurable.

Prop. Let f be a measurable function on E . Then f^+ and f^- are integrable over E if and only if $|f|$ is integrable over E.

Proof: Assume f^+ and f^- are integrable over E . Notice that $|f| = f^+ + f^-$. Thus $\int_E |f| = \int_E f^+ + \int_E f^- < \infty$, and $|f|$ is integrable over E.

Now assume $|f|$ is integrable over E . $0 \leq f^+ \leq |f|$ and $0 \leq f^- \leq |f|$. So by monotonicity: $\int_E f^+ \leq \int_E |f| < \infty$, $\int_E f^- \leq \int_E |f| < \infty$. Thus f^+ and f^- are integrable over E .

Def. A measurable function f on E is said to be **integrable over** E if $|f|$ is integrable over E . When this is so we define:

$$
\int_E f = \int_E f^+ - \int_E f^-.
$$

Notice if f is nonnegative, i.e. $f = |f| = f^+$, $f^- = 0$ and we get the usual definition of the Lebesgue integral of a nonnegative function. If f is a bounded measurable function of finite support by linearity of integration this definition coincides with the original definition.

Notice also that, unlike Riemann integration, in order for a function f to be Lebesgue integrable we require $|f|$ to also be integrable.

Ex. $f(x) = \frac{\sin x}{x}$ $\frac{d}{dx}$ is integrable as a Riemann integral over $[0,\infty)$, but not as a Lebesgue integral because $\int_{[0,\infty)}|$ $\sin x$ $\frac{d}{dx}$ | = ∞ .

Prop. Let f be integrable over E. Then f is finite a.e. on E and

$$
\int_E f = \int_{E \sim A} f \text{ if } A \subseteq E \text{ and } m(A) = 0.
$$

Proof: We know if q is nonnegative and q is integrable over E then q is finite a.e. on E . Thus $|f|$ is finite a.e. on E and hence f is.

Since f is integrable: $\int_E f = \int_E f^+ - \int_E f^ E$ J J and $\int_E f^+ = \int_{E \sim E_2} f^+$ $\int_E f^+ = \int_{E \sim E_0} f^+$ $\int_E f^- = \int_{E \sim E_0} f^ E_{E} f^{-} = \int_{E \sim E_0} f^{-}$.

So
$$
\int_{E \sim E_0} f = \int_{E \sim E_0} f^+ - \int_{E \sim E_0} f^- = \int_E f^+ - \int_E f^- = \int_E f.
$$

Prop. (The integral comparison test). Let f be measurable on E . Suppose there is a nonnegative function g that is integrable over E and $|f| \le g$ on E . Then f is integrable over E and

$$
|\int_E f| \le \int_E |f|.
$$

Proof: By monotonicity of integrals for nonnegative measurable functions:

$$
\int_E |f| \leq \int_E g < \infty,
$$

so f is integrable.

Since $|f|$ is integrable, so are f^+ and $f^-.$

By the triangle inequality we have:

$$
|\int_E f| = |\int_E f^+ - \int_E f^-| \le \int_E f^+ + \int_E f^- = \int_E |f|.
$$

Theorem: Let f and g be integrable over E . Then

- 1. for $\alpha, \beta \in \mathbb{R}$ $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$.
- 2. if $f \leq g$ on E then

$$
\int_E f \le \int_E g
$$

.

Corollary: Let f be integrable over E. Assume A and B are disjoint subsets of E. Then: $\int_{A\cup B} f = \int_A f + \int_B f$.

Proof: $|(f)(\chi_A)| \leq |f|$ and $|(f)(\chi_B)| \leq |f|$ on E , thus $(f)(\chi_A)$ and $(f)(\chi_B)$ are integrable over E by the integrable comparison test.

Notice that: $(f)(\chi_{A\cup B}) = (f)(\chi_A) + (f)(\chi_B)$ on E .

But for any measurable subset D of E :

 $\int_D f = \int_D (f)(\chi_D).$

Thus $\int_{A\cup B} f = \int_{A\cup B} (f)(\chi_{A\cup B}) = \int_{A\cup B} ((f)(\chi_A) + (f)(\chi_B))$ $=\int_{A\cup B}(f)(\chi_A)+\int_{A\cup B}(f)(\chi_B)=\int_A f+\int_B f.$

The Lebesgue Dominated Convergence Theorem: Let $\{f_n\}$ be a sequence of measurable functions on E . Suppose there is a function g that is integrable over E and $|f_n| \leq g$ on E for all n. If $f_n \to f$ pointwise a.e. on E, then f is integrable over E and

$$
\lim_{n\to\infty}\int_E f_n = \int_E f.
$$

Proof: Since $|f_n| \leq g$ on E for all n then $|f| \leq g$ a.e. on E .

Since g is integrable over E , then f is integrable over E by the integral comparison test.

Since $\{f_n\}$ and f are integrable <code>over</code> E these functions are finite a.e. on E .

By removing sets where any of those functions are not finite (sets of measure 0), we can assume all of those functions are finite on E .

 $g - f$ and $g - f_n$ are measurable nonnegative functions and $\{g - f_n\}$ converges to $g - f$ a.e. on E.

By Fatou's lemma:

$$
\int_E (g - f) \le \liminf \int_E (g - f_n).
$$

Thus we can say:

$$
\int_E g - \int_E f = \int_E (g - f) \le \liminf \int_E (g - f_n)
$$

$$
= \int_E g - \liminf \int_E f_n.
$$

So we have:

$$
-\int_{E} f \le -\liminf \int_{E} f_n
$$

Or:

$$
\int_E f \ge \limsup \int_E f_n. \quad (*)
$$

Notice that $g + f_n \geq 0$, so by Fatou's lemma:

 \int_E $(g + f) \leq$ liminf \int_E $(g + f_n)$ \int_E $g + \int_E f \leq \int_E g + \liminf \int_E f_n$ $\int_E f \leq liminf \int_E f_n$.

So together with (\ast) we get \lim $\lim_{n\to\infty} \int_E f_n = \int_E f.$ General Lebesgue Dominated Convergence Theorem: Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise a.e. on E to f . Suppose there is a sequence of nonnegative measurable functions ${g_n}$ on E where $g_n \to g$ pointwise a.e. on E and $|f_n| \leq g_n$ on E for all n.

$$
\text{If } \lim_{n \to \infty} \int_E g_n = \int_E g < \infty \text{ then } \lim_{n \to \infty} \int_E f_n = \int_E f.
$$

Proof: Just replace $\{g-f_n\}$ and $\{g+f_n\}$ with $\{g_n-f_n\}$ and $\{g_n+f_n\}$ in the proof of the Lebesgue Dominated Convergene Theorem.

Ex. Let f be a real valued integrable function on $[0,1]$. Show $x^n f(x)$ is integrable on $[0,1]$ and calculate $\,$ lim $\lim_{n\to\infty}\int_0^1 x^n f(x)$ $\int_{0}^{1} x^{n} f(x).$

Since
$$
0 \le x \le 1
$$
, $|x^n f(x)| \le |x^n||f(x)| \le |f(x)|$.

So by the integral comparison test since f is integrable over $[0,1]$ so is $x^n f(x)$ $(x^n f(x))$ is measurable because $f(x)$ and x^n are).

Since $f(x)$ is integrable over $[0,1]$, f is finite a.e. on $[0,1]$. Thus we have: lim $n\rightarrow\infty$ $x^n f(x) = 0$ a.e. on [0,1].

By the Lebesgue dominated convergence theorem:

$$
\lim_{n \to \infty} \int_0^1 x^n f(x) = \int_0^1 \lim_{n \to \infty} x^n f(x) = 0.
$$

Ex. Evaluate
$$
\lim_{n \to \infty} \int_E \frac{e^{-\frac{x}{n}}}{1 + x^2}
$$
 for $E = [0, \infty)$.

Let
$$
f_n(x) = \frac{e^{-\frac{x}{n}}}{1+x^2}
$$
 for $0 \le x < \infty$.
\n
$$
\lim_{n \to \infty} \frac{e^{-\frac{x}{n}}}{1+x^2} = \frac{1}{1+x^2}; \text{ so } f_n(x) \to f(x) = \frac{1}{1+x^2} \text{ pointwise on } 0 \le x < \infty.
$$
\nNotice that $|f_n(x)| = \left| \frac{e^{-\frac{x}{n}}}{1+x^2} \right| \le \frac{1}{1+x^2}.$

Let's let
$$
g(x) = \frac{1}{1+x^2}
$$
 and show that $g(x)$ is integrable over $E = [0, \infty)$.
Let $g_n(x) = \frac{1}{1+x^2}$ if $0 \le x \le n$
 $= 0$ if $n < x$.

 $\{ g_n(x) \}$ is increasing, measurable, and $g_n(x) \to g(x)$ pointwise on $E.$

Notice that each g_n is Riemann integrable over $[0, n]$, so the Lebesgue integral equals the Riemann integral over $[0, n]$.

Thus
$$
\int_E g_n = \int_0^n \frac{1}{1+x^2} dx = \tan^{-1}(n)
$$
.

Now by the Lebesgue monotone convergence theorem:

$$
\lim_{n \to \infty} \int_E g_n = \int_E \frac{1}{1 + x^2}
$$

$$
\lim_{n \to \infty} \tan^{-1}(n) = \int_E \frac{1}{1 + x^2}
$$

$$
\frac{\pi}{2} = \int_E \frac{1}{1 + x^2}.
$$

So $g(x)$ is integrable over E .

Since $\{f_n\}$ are all measurable, we can apply the Lebesgue dominated convergence theorem to get:

$$
\lim_{n \to \infty} \int_E \frac{e^{-\frac{x}{n}}}{1 + x^2} = \int_E \frac{1}{1 + x^2} = \frac{\pi}{2}.
$$