The Lebesgue Integral
$$
\int_E f
$$
: $f \ge 0$

Def. A measurable function with domain E has **finite support** if $m({x \in E | f(x) \neq 0}) < \infty$.

Let $E_0 = \{x \in E \mid f(x) \neq 0\}$ with $m(E_0) < \infty$. If f is bounded and measurable on E we can define:

$$
\int_E f = \int_{E_0} f.
$$

So what do we do if $m(E_0)=\infty$ or $m(E_0)<\infty$ but f is not bounded?

Def. Let f be a nonnegative measurable function on E . Let $H_E(f) = \{$ bounded measurable functions of finite support $|0 \leq h \leq f$ on $E\}.$ we define $\int_E\,\,f$ by

$$
\int_E f = \sup \left\{ \int_E h \, \middle| \, h \in H_E(f) \right\}.
$$

Notice that $\int_E\,\,f$ can be finite or $\infty.$

Chebychev's inequality: Let f be a nonnegative measurable function on E . Then for any $a > 0$,

 ψ_n is a bounded, measurable function of finite support with

 $a(m(E_{a,n})) = \int_E \psi_n$ and $0 \le \psi_n \le f$ on E for all n .

Notice that:
$$
E_a = \bigcup_{n=1}^{\infty} E_{a,n}
$$
 and $E_{a,n+1} \supseteq E_{a,n}$.
Thus $m(E_a) = \lim_{n \to \infty} m(\bigcup_{n=1}^{\infty} E_{a,n}) = \lim_{n \to \infty} m(E_{a,n})$.

Thus
$$
\infty = a(m(E_a)) = a\left(\lim_{n\to\infty} m(E_{a,n})\right) = \lim_{n\to\infty} \int_E \psi_n \le \int_E f
$$
.

So $m({x \in E | f(x) \ge a}) \le \frac{1}{a}$ $\frac{1}{a}\int_E f$ because both sides are ∞ .

Now suppose $m(E_a) < \infty$.

Define $h = a(\chi_{E_a})$.

h is a bounded measurable function with finite support and $0 \leq h \leq f$ on E.

By definition of $\int_E f$: $\int_E f \ge \int_E h = a(m(E_a)).$

Thus
$$
m(\lbrace x \in E | f(x) \ge a \rbrace) \le \frac{1}{a} \int_E f
$$
.

Prop: Let f be a nonnegative measurable function on E . Then

$$
\int_E f = 0
$$
 if and only if $f = 0$ a.e. on E.

Proof: Assume $\int_E f = 0$.

Let E_1 \boldsymbol{n} $=\{x \in E \mid f(x) \geq \frac{1}{x}\}$ $\frac{1}{n}$.

Then by Chebychev's inequality:

$$
m\left(E_{\frac{1}{n}}\right) \le n \int_E f = 0 \text{ for all } n.
$$

 $\{x \in E \mid f(x) > 0\} = \bigcup_{n=1}^{\infty} E_{\frac{1}{n}}$ \boldsymbol{n} ∞ $_{n=1}^{\infty}$ $E_{\frac{1}{n}}$ and $E_{\frac{1}{n}}$ \boldsymbol{n} $\subseteq E_{1}$ $n+1$. Thus lim $n\rightarrow\infty$ $m(\ \cup_{n=1}^{\infty} E_{\frac{1}{n}}$ \boldsymbol{n} ∞ $\sum_{n=1}^{\infty} E_{\frac{1}{n}}$ = $\lim_{n \to \infty}$ $n\rightarrow\infty$ m ($E_{\rm \frac{1}{2}}$ \boldsymbol{n} $= 0.$

Hence $m({x \in E | f(x) > 0}) = 0$ and $f = 0$ a.e. on E .

Now suppose $f = 0$ a.e. on E .

Let φ be a simple function and h be a bounded measurable function of finite support for which $0 \leq \varphi \leq h \leq f$ on E .

Since φ is simple, $\int_E \varphi = 0$, for any $\varphi \leq h$, thus $\int_E \; h = 0$. Since this holds for all $h \leq f$, $\int_E f = 0$.

Theorem: Let f and g be nonnegative measurable functions on E . Then

- 1. for any $\alpha, \beta > 0$ $\int_F (\alpha f + \beta g) = \alpha \int_F f + \beta \int_F g$
- 2. if $f \leq g$ on E then

$$
\int_E f \leq \int_E g.
$$

Proof: First let's show $\int_E \alpha f = \alpha \int_E f$.

Let h be any bounded, measurable function of finite support and $0 \leq h \leq f$.

 $0 \leq h \leq f$ if an only if $0 \leq \alpha h \leq \alpha f$.

Notice that $\int_E \alpha h = \alpha \int_E h$.

$$
\int_{E} \alpha f = \sup \left\{ \int_{E} \alpha h \right\} \alpha h \text{ bounded, measurable, of finite support and}
$$
\n
$$
0 \le \alpha h \le \alpha f \text{ on } E \}
$$
\n
$$
= \alpha \sup \left\{ \int_{E} h \right\} \text{ bounded, measurable, of finite support and}
$$
\n
$$
0 \le h \le f \text{ on } E \}
$$
\n
$$
= \alpha \int_{E} f.
$$

To prove linearity we only need to show: $\int_E (f + g) = \int_E f + \int_E g$.

Let F , G be bounded, measurable functions of finite support with $0 \leq F \leq f$ and $0 \leq G \leq g$. Then $0 \leq F + G \leq f + g$ and $F + G$ is bounded, measurable, and finite support.

 \int_E $F + \int_E$ $G = \int_E$ $(F + G) \le \int_E$ $(f + g)$ for all $0 \le F \le f$ and $0 \le G \le g$ that are bounded, measurable, and of finite support.

Thus $\int_E f + \int_E g \leq \int_E (f + g).$

By definition:

$$
\int_{E} (f+g) = \sup \left\{ \int_{E} l \middle| \text{ bounded, measurable, of finite support} \right\}
$$
\n
$$
and \ 0 \le l \le f+g \text{ on } E \}.
$$

Let's show that $\int_E l \leq \int_E f + \int_E g$.

Let
$$
h = \min \{f, l\}
$$
 and $k = l - h$ on E.

Notice if $x \in E$ and $l(x) \le f(x)$ then $k(x) = 0 \le g(x)$.

If $l(x) > f(x)$ then $k(x) = l(x) - f(x) \le g(x)$ since $0 \le l \le f + g$. Thus $h(x) \leq g(x)$ on E.

Both h and k are bounded, measurable function of finite support. Thus we have: $0 \le h \le f$, $0 \le k \le g$ and $l = h + k$ on E.

$$
\text{So } \int_E l = \int_E h + \int_E k \le \int_E f + \int_E g.
$$

Thus $\int_E (f+g) \leq \int_E f + \int_E g$ and hence $\int_E (f + g) = \int_E f + \int_E g$.

To prove monotonicity: let h be any bounded, measurable function of finite support where $0 \leq h \leq f$ on E.

But since $f \leq g$ then $h \leq g$ on E .

By definition of \int_E g , \int_E $h \leq \int_E$ g .

But
$$
\int_E f = \sup \{ \int_E h \}
$$
 so $\int_E f \le \int_E g$.

Theorem: Let f be a nonnegative measurable function on E . If A and B are disjoint measurable subsets of E , then

$$
\int_{A \cup B} f = \int_A f + \int_B f.
$$

In particular, if E_0 is a subset of E of measure 0, then

$$
\int_E f = \int_{E \sim E_0} f.
$$

Proof: The first relationship follows from: $f = (f)(\chi_A) + (f)(\chi_B)$ and the fact that $\int_E (f)(\chi_A) = \int_A f$.

 $\int_E\ f=\int_{E\sim E_0}f$ follows from the first relationship and the fact that $\int_{E_0}f=0$ since $m(E_0) = 0$.

Recall that if $\{a_n\}$ is a sequence of real numbers then the limit superior of $\{a_n\}$, denoted by limsup $\{a_n\}$, is given by:

$$
\mathsf{limsup}\{a_n\}=\lim_{n\to\infty}\sup\{a_k\,|\,k\geq n\}.
$$

The limit inferior of $\{a_n\}$, denoted by liminf $\{a_n\}$, is given by:

$$
\mathsf{limit}\{a_n\}=\lim_{n\to\infty}\inf\{a_k|\ k\geq n\}.
$$

Another way to think of these notions is to take all subsequential limits of $\{a_n\}$ and call that set E .

$$
\limsup\{a_n\} = \sup(E)
$$

$$
\liminf\{a_n\} = \inf(E)
$$

If $\{a_n\}$ has a limit l , then $\limsup\{a_n\} = \liminf\{a_n\} = l$.

Ex. Let
$$
a_{3n-2} = \frac{1}{n}
$$
, $a_{3n-1} = 1 - \frac{1}{n}$, $a_{3n} = -\frac{n}{n+1}$.
\n $\{1,0,-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{2}{3},\frac{1}{3},\frac{2}{3},-\frac{3}{4},...\};$ $E = \{-1,0,1\}.$

Thus limsup $\{a_n\} = \sup(E) = 1$ and $\liminf\{a_n\} = \inf(E) = -1$.

Fatou's lemma: Let $\{f_n\}$ be a sequence of nonnegative measurable functions on E. If $f_n \to f$ pointwise a.e. on E, then

$$
\int_E f \leq \liminf \int_E f_n.
$$

Proof: Since $\int_A\ f=0$, if $m(A)=0$, we can assume that $f_n\to f$ pointwise on all of E .

 f is nonnegative and measurable because it's the pointwise limit of nonnegative, measurable functions.

To prove the theorem it is enough to prove that

$$
\int_E h \leq \liminf \int_E f_n
$$

for any bounded, measurable function of finite support for which $0 \leq h \leq f$ on E .

Let h be a bounded, measurable function of finite support for which $0 \leq h \leq f$ and $|h| \leq M$ for some $M \geq 0$ on E.

Let $E_0 = \{x \in E \mid h(x) \neq 0\}.$

 $m(E_0)<\infty$ since h has finite support.

Let
$$
h_n = \min\{h, f_n\}
$$
 on E.

Notice that h_n is measurable and $0 \le h_n \le M$, and $h_n \equiv 0$ on $E \sim E_0$. If $x \in E$, since $h(x) \le f(x)$ and $f_n(x) \to f(x)$, $h_n(x) \to h(x)$.

Thus $h_n(x)$ is uniformly bounded (by M), and if we restrict $\{h_n\}$ to E_0 , $m(E_0) < \infty$, then we can apply the bounded convergence theorem.

$$
\lim_{n \to \infty} \int_E h_n = \lim_{n \to \infty} \int_{E_0} h_n = \int_{E_0} h = \int_E h
$$

Since $h_n \equiv 0$ on $E \sim E_0$.

However, for each $n, h_n \leq f_n$ on E .

Thus we have:

$$
\int_E h_n \leq \int_E f_n.
$$

Hence:

$$
\int_E h = \lim_{n \to \infty} \int_E h_n \le \liminf \int_E f_n.
$$

Since this is true for all h , nonnegative, measurable, bounded and $0 \leq h \leq f$ on E we have:

$$
\int_E f \leq \liminf \int_E f_n.
$$

Ex. Here's an example where you have a strict inequality in Fatou's lemma.

Let
$$
E = [0,1]
$$
 and let $f_n = (n)\chi_{(0,\frac{1}{n})}$.
\n $\{f_n\}$ converges to $f = 0$ on [0,1].
\nHowever $\int_0^1 f_n = 1$ for all *n*, but $\int_0^1 f = 0$.
\nThus $0 = \int_0^1 f < \liminf \int_0^1 f_n = 1$.

If we add the condition that $\{f_n\}$ is monotonically increasing then the inequality in Fatou's lemma becomes an equality.

The Monotone Convergence Theorem: Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E. If $f_n \to f$ pointwise a.e. on E then

$$
\lim_{n\to\infty}\int_E f_n = \int_E f.
$$

Proof: According to Fatou's lemma: $\int_E f \leq liminf \int_E f_n$.

However, for each $n, f_n \leq f$ a.e. on E .

Thus $\int_E f_n \leq \int_E f$ for each n .

Therefore, $\limsup \int_E f_n \leq \int_E f$.

Since limsup ${a_n} \geq$ liminf ${a_n}$ we have:

 $\liminf \int_E f_n \leq \limsup \int_E f_n \leq \int_E f \leq \liminf \int_E f_n.$

Thus
$$
\lim_{n \to \infty} \int_E f_n = \int_E f
$$
.

Corollary: Let $\{u_n\}$ be a sequence of nonnegative measurable functions on $E.$ If $f=\sum_{n=1}^{\infty}u_n$ pointwise a.e. on E , then $\int_E f=\sum_{n=1}^{\infty}\int_E u_n$ \sum_{E} $f = \sum_{n=1}^{\infty} \int_{E} u_n$.

Proof: Let $f_n = \sum_{k=1}^n u_k$ $_{k=1}^n u_k$.

Then $\{f_n\}$ is increasing, nonnegative and measurable.

Thus by the Monotone Convergence Theorem:

$$
\lim_{n \to \infty} \int_E f_n = \int_E f
$$
\n
$$
\lim_{n \to \infty} \int_E \sum_{k=1}^n u_k = \int_E f
$$
\n
$$
\lim_{n \to \infty} \sum_{k=1}^n \int_E u_k = \sum_{k=1}^\infty \int_E u_k = \int_E f.
$$

Ex. Let
$$
f(x) = \frac{1}{1-x^4} = 1 + x^4 + x^8 + \dots = \sum_{k=0}^{\infty} x^{4k}
$$
. Evaluate $\int_0^{\frac{1}{2}} f$.

$$
\int_0^{\frac{1}{2}} f = \int_0^{\frac{1}{2}} \sum_{k=0}^{\infty} x^{4k} = \sum_{k=0}^{\infty} \int_0^{\frac{1}{2}} x^{4k}
$$
 (by the previous corollary)

$$
= \sum_{k=0}^{\infty} \frac{x^{4k+1}}{4k+1} \Big|_{x=0}^{x=\frac{1}{2}}
$$

$$
= \sum_{k=0}^{\infty} \frac{1}{(4k+1)(2^{(4k+1)})}.
$$

Another application of the monotone convergence theorem is that it allows us to evaluate some Lebesgue integrals.

Ex. Evaluate the Lebesgue integral
$$
\int_E \frac{1}{x^2}
$$
 where $E = [1, \infty)$.

We know that if f is bounded and measurable on a closed bounded interval D , then if the Riemann integral exists over D , then it's equal to the Lebesgue integral over D .

Let
$$
E_n = [1, n]
$$
, $n \in \mathbb{Z}^+$, and $f_n = \frac{1}{x^2}$ if $x \in E_n$
= 0 if $x \in (n, \infty)$.

Then $\{f_n\}$ is bounded, increasing, nonnegative and measurable. In addition, $f_n \to f$ pointwise on E.

Thus by the monotone convergence theorem: lim $\lim_{n\to\infty} \int_E f_n = \int_E f.$

But $\int_E f_n = \int_{E_n} f_n = \int_1^n \frac{1}{r^2}$ x^2 \boldsymbol{n} $\int_E f_n = \int_{E_n} f_n = \int_1^n \frac{1}{x^2}$ (where this is a Riemann integral).

$$
\int_{1}^{n} \frac{1}{x^2} = -\frac{1}{x} \big|_{x=1}^{x=n} = 1 - \frac{1}{n}
$$

So
$$
\lim_{n \to \infty} \int_E f_n = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = 1 = \int_E f = \int_E \frac{1}{x^2}
$$
.

Def. A nonnegative measurable function f on a measurable set E is said to be **integrable over E** if $\int_E f < \infty$.

Prop. Let the nonnegative function f be integrable over E . Then f is finite a.e. on E .

Proof: By Chebychev's inequality we know:

$$
m(\lbrace x \in E \mid f(x) \ge n \rbrace) \le \frac{1}{n} \int_E f.
$$

By monotonicity we know:

$$
m(\{x \in E \mid f(x) = \infty\}) \le m(\{x \in E \mid f(x) > n\}) \le \frac{1}{n} \int_{E} f.
$$

But $\int_E f < \infty$, so $m(\{x \in E \mid f(x) = \infty\}) = 0$, thus f is finite a.e. on E .

Beppo Levi's Lemma: Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E . If the sequence of integrals $\{\int_E f_n\}$ is bounded, then $\{f_n\}$ converges pointwise on E to a measurable function f that is finite a.e. on E and \lim $\lim_{n\to\infty}\int_E f_n = \int_E f < \infty.$

Proof: Let $f(x) = \lim$ $\lim_{n\to\infty} f_n(x)$ for $x \in E$.

By monotone convergence: $\lim_{n\to\infty} \int_E f_n = \int_E f < \infty;$ since $\{\int_E f_n\}$ is bounded. f is finite a.e. on E since $\int_E f < \infty$.