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                             The Lebesgue Integral ∫ 𝑓:    𝑓
𝐸

≥ 0 

 

Def.  A measurable function with domain 𝐸 has finite support if                   

𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) ≠ 0}) < ∞.  

 

Let 𝐸0 = {𝑥 ∈ 𝐸| 𝑓(𝑥) ≠ 0} with 𝑚(𝐸0) < ∞.  If 𝑓 is bounded and 

measurable on 𝐸 we can define: 

                                      ∫ 𝒇 = ∫ 𝒇
𝑬𝟎𝑬

.  

 

 

 

 

So what do we do if 𝑚(𝐸0) = ∞ or 𝑚(𝐸0) < ∞ but 𝑓 is not bounded? 
 

Def.  Let 𝑓 be a nonnegative measurable function on 𝐸.  Let  

  𝐻𝐸(𝑓) = {bounded measurable functions of finite support|0 ≤ ℎ ≤ 𝑓 on 𝐸}.         

 we define ∫ 𝑓
𝐸

 by 

                                  ∫ 𝒇
𝑬

= 𝐬𝐮𝐩 {∫ 𝒉
𝑬

|  𝒉 ∈ 𝑯𝑬(𝒇)}.  

        

Notice that ∫ 𝑓
𝐸

 can be finite or ∞. 
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Chebychev’s inequality:  Let 𝑓 be a nonnegative measurable function on 𝐸.  Then 

for any 𝑎 > 0, 

        𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) ≥ 𝑎}) ≤
1

𝑎
∫ 𝑓

𝐸
.     

 

Proof: Let 𝐸𝑎 = {𝑥 ∈ 𝐸| 𝑓(𝑥) ≥ 𝑎}.  

 

First let’s assume 𝑚(𝐸𝑎) = ∞. 

Let 𝐸𝑎,𝑛 = 𝐸𝑎 ∩ [−𝑛, 𝑛]   and   𝜓𝑛 = 𝑎(𝜒𝐸𝑎,𝑛
).  

 

𝜓𝑛 is a bounded, measurable function of finite support with 

𝑎(𝑚(𝐸𝑎,𝑛)) = ∫ 𝜓𝑛𝐸
   and   0 ≤ 𝜓𝑛 ≤ 𝑓 on 𝐸 for all 𝑛.  

 

Notice that:  𝐸𝑎 = ⋃ 𝐸𝑎,𝑛
∞
𝑛=1    and  𝐸𝑎,𝑛+1 ⊇ 𝐸𝑎,𝑛. 

Thus 𝑚(𝐸𝑎) = lim
𝑛→∞

𝑚(⋃ 𝐸𝑎,𝑛
∞
𝑛=1  ) = lim

𝑛→∞
𝑚(𝐸𝑎,𝑛).  

 

Thus   ∞ = 𝑎(𝑚(𝐸𝑎)) = 𝑎 ( lim
𝑛→∞

𝑚(𝐸𝑎,𝑛)) = lim
𝑛→∞

∫ 𝜓𝑛𝐸
≤ ∫ 𝑓

𝐸
.  

 

So 𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) ≥ 𝑎}) ≤
1

𝑎
∫ 𝑓

𝐸
  because both sides are ∞. 

 

Now suppose 𝑚(𝐸𝑎) < ∞.  

 

Define ℎ = 𝑎(𝜒𝐸𝑎
). 

ℎ is a bounded measurable function with finite support and 0 ≤ ℎ ≤ 𝑓 on 𝐸. 

 

𝑦 = 𝑓(𝑥) 

𝐸 

𝑎 

(𝑎)(𝑚(𝐸)) 



3 
 

 

By definition of ∫ 𝑓
𝐸

:      ∫ 𝑓
𝐸

≥ ∫ ℎ = 𝑎(𝑚(𝐸𝑎)).
𝐸

     

 

Thus    𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) ≥ 𝑎}) ≤
1

𝑎
∫ 𝑓

𝐸
. 

 

 

Prop: Let 𝑓 be a nonnegative measurable function on 𝐸.  Then  

                  ∫ 𝑓
𝐸

= 0  if and only if  𝑓 = 0 a.e.  on 𝐸. 

 

Proof:  Assume   ∫ 𝑓
𝐸

= 0.  

 

Let  𝐸1

𝑛

= {𝑥 ∈ 𝐸| 𝑓(𝑥) ≥
1

𝑛
}.      

Then by Chebychev’s inequality: 

          𝑚 (𝐸1

𝑛

) ≤ 𝑛 ∫ 𝑓
𝐸

= 0   for all 𝑛.  

 

 {𝑥 ∈ 𝐸| 𝑓(𝑥) > 0} = ⋃ 𝐸1

𝑛

∞
𝑛=1   and 𝐸1

𝑛

⊆ 𝐸 1

𝑛+1

.  Thus 

               lim
𝑛→∞

𝑚( ⋃ 𝐸1

𝑛

∞
𝑛=1 ) = lim

𝑛→∞
𝑚 (𝐸1

𝑛

) = 0.  

 

Hence   𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) > 0}) = 0   

and 𝑓 = 0 a.e. on 𝐸. 
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Now suppose 𝑓 = 0 a.e. on 𝐸. 

Let 𝜑 be a simple function and ℎ be a bounded measurable function of finite 

support for which 0 ≤ 𝜑 ≤ ℎ ≤ 𝑓 on 𝐸.  

 

Since 𝜑 is simple, ∫ 𝜑 = 0
𝐸

, for any 𝜑 ≤ ℎ, thus ∫ ℎ = 0
𝐸

. 

Since this holds for all ℎ ≤ 𝑓,    ∫ 𝑓
𝐸

= 0. 

 

 

Theorem: Let 𝑓 and 𝑔  be nonnegative measurable functions on 𝐸.  Then 

   1.   for any 𝛼, 𝛽 > 0      ∫ (𝛼𝑓 + 𝛽𝑔) = 𝛼 ∫ 𝑓 + 𝛽 ∫ 𝑔
𝐸𝐸𝐸

 

   2.   if 𝑓 ≤  𝑔 on 𝐸 then 

                                                      ∫ 𝑓
𝐸

≤ ∫  𝑔
𝐸

. 

 

 

Proof:  First let’s show ∫ 𝛼𝑓 = 𝛼 ∫ 𝑓
𝐸𝐸

. 

 

Let ℎ be any bounded, measurable function of finite support and 0 ≤ ℎ ≤ 𝑓.  

 

0 ≤ ℎ ≤ 𝑓 if an only if 0 ≤ 𝛼ℎ ≤ 𝛼𝑓. 

 

Notice that ∫ 𝛼ℎ = 𝛼 ∫ ℎ
𝐸𝐸

. 
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∫
𝛼𝑓 = sup {∫ 𝛼ℎ

𝐸

|  𝛼ℎ 𝑏𝑜𝑢𝑛𝑑𝑒𝑑, 𝑚𝑒𝑎𝑠𝑢𝑎𝑏𝑙𝑒, 𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑎𝑛𝑑

 0 ≤ 𝛼ℎ ≤ 𝛼𝑓 𝑜𝑛 𝐸} 
𝐸

 

  
            = 𝛼 sup {∫ ℎ

𝐸
|  ℎ 𝑏𝑜𝑢𝑛𝑑𝑒𝑑, 𝑚𝑒𝑎𝑠𝑢𝑎𝑏𝑙𝑒, 𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑎𝑛𝑑

 0 ≤ ℎ ≤ 𝑓 𝑜𝑛 𝐸} 
                 

                = 𝛼 ∫ 𝑓
𝐸

 . 

 

To prove linearity we only need to show:  ∫ (𝑓 + 𝑔) = ∫ 𝑓 + ∫ 𝑔
𝐸𝐸𝐸

.  

 

Let 𝐹, 𝐺 be bounded, measurable functions of finite support with 

0 ≤ 𝐹 ≤ 𝑓  and  0 ≤ 𝐺 ≤ 𝑔.   

Then 0 ≤ 𝐹 + 𝐺 ≤ 𝑓 + 𝑔 and 𝐹 + 𝐺 is bounded, measurable, and finite support. 

 

∫ 𝐹 + ∫ 𝐺
𝐸𝐸

= ∫ (𝐹 + 𝐺) ≤ ∫ (𝑓 + 𝑔)
𝐸𝐸

 for all 0 ≤ 𝐹 ≤ 𝑓  and  0 ≤ 𝐺 ≤ 𝑔 

that are bounded, measurable, and of finite support.  

 

Thus     ∫ 𝑓 + ∫ 𝑔
𝐸𝐸

≤ ∫ (𝑓 + 𝑔)
𝐸

.  

 

 

 

 

By definition: 

∫ (𝑓 + 𝑔) = sup {∫ 𝑙
𝐸

|  𝑙 𝑏𝑜𝑢𝑛𝑑𝑒𝑑, 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, 𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡  
𝐸

 

                                                         𝑎𝑛𝑑 0 ≤ 𝑙 ≤ 𝑓 + 𝑔 𝑜𝑛 𝐸}. 
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Let’s show that  ∫ 𝑙 ≤
𝐸

∫ 𝑓 + ∫ 𝑔
𝐸𝐸

.  

 

Let ℎ = min {𝑓, 𝑙}  and 𝑘 = 𝑙 − ℎ on 𝐸.  

 

Notice if 𝑥 ∈ 𝐸 and  𝑙(𝑥) ≤ 𝑓(𝑥) then 𝑘(𝑥) = 0 ≤ 𝑔(𝑥).  

 

If 𝑙(𝑥) > 𝑓(𝑥) then 𝑘(𝑥) = 𝑙(𝑥) − 𝑓(𝑥) ≤ 𝑔(𝑥)  since 0 ≤ 𝑙 ≤ 𝑓 + 𝑔. 

Thus ℎ(𝑥) ≤ 𝑔(𝑥) on 𝐸.  

 

Both ℎ and 𝑘 are bounded, measurable function of finite support. 

Thus we have:  0 ≤ ℎ ≤ 𝑓,  0 ≤ 𝑘 ≤ 𝑔 and 𝑙 = ℎ + 𝑘 on 𝐸.  

 

So ∫ 𝑙 = ∫ ℎ + ∫ 𝑘 ≤
𝐸𝐸𝐸 ∫ 𝑓 + ∫ 𝑔

𝐸𝐸
.  

 

Thus ∫ (𝑓 + 𝑔)
𝐸

≤ ∫ 𝑓 + ∫ 𝑔
𝐸𝐸

  

and hence ∫ (𝑓 + 𝑔) = ∫ 𝑓 + ∫ 𝑔
𝐸𝐸𝐸

. 

 

To prove monotonicity:  let ℎ be any bounded, measurable function of finite 

support where 0 ≤ ℎ ≤ 𝑓 on 𝐸.  

 

But since 𝑓 ≤ 𝑔 then ℎ ≤ 𝑔 on 𝐸. 

By definition of ∫ 𝑔
𝐸

,  ∫ ℎ ≤ ∫ 𝑔
𝐸𝐸

.  

 

But ∫ 𝑓
𝐸

= sup {∫ ℎ}
𝐸

  so  ∫ 𝑓
𝐸

≤ ∫  𝑔
𝐸

. 
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Theorem:  Let 𝑓 be a nonnegative measurable function on 𝐸.  If 𝐴 and 𝐵 are 

disjoint measurable subsets of 𝐸, then 

                          ∫ 𝑓 = ∫ 𝑓 + ∫ 𝑓
𝐵𝐴𝐴∪𝐵

. 

In particular, if 𝐸0 is a subset of 𝐸 of measure 0, then 

                            ∫ 𝑓
𝐸

= ∫ 𝑓
𝐸~𝐸0

. 

 

Proof:  The first relationship follows from:  𝑓 = (𝑓)(𝜒𝐴) + (𝑓)(𝜒𝐵) and the 

fact that ∫ (𝑓)(𝜒𝐴) = ∫ 𝑓
𝐴𝐸

. 

∫ 𝑓
𝐸

= ∫ 𝑓
𝐸~𝐸0

 follows from the first relationship and the fact that ∫ 𝑓 = 0
𝐸0

  

since 𝑚(𝐸0) = 0. 

 

Recall that if {𝑎𝑛} is a sequence of real numbers then the limit superior of {𝑎𝑛}, 

denoted by limsup{𝑎𝑛}, is given by: 

                 limsup{𝒂𝒏} = 𝐥𝐢𝐦
𝒏→∞

𝐬𝐮𝐩{𝒂𝒌|  𝒌 ≥ 𝒏}. 

The limit inferior of {𝑎𝑛}, denoted by liminf{𝑎𝑛}, is given by: 

                 liminf{𝒂𝒏} = 𝐥𝐢𝐦
𝒏→∞

𝐢𝐧𝐟{𝒂𝒌|  𝒌 ≥ 𝒏}.  

 

Another way to think of these notions is to take all subsequential limits of {𝑎𝑛} 

and call that set 𝐸. 

                      limsup{𝑎𝑛} = sup(𝐸)  

                        liminf{𝑎𝑛} = inf(𝐸) 

If {𝑎𝑛} has a limit 𝑙, then limsup{𝑎𝑛} = liminf{𝑎𝑛} = 𝑙. 
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Ex.  Let    𝑎3𝑛−2 =
1

𝑛
 ,     𝑎3𝑛−1 = 1 −

1

𝑛
 ,      𝑎3𝑛 = −

𝑛

𝑛+1
  . 

    {1,0, −
1

2
 ,

1

2
,

1

2
 , −

2

3
 ,

1

3
 ,

2

3
 , −

3

4
 , … };        𝐸 = {−1, 0, 1}. 

Thus limsup{𝑎𝑛} = sup(𝐸) = 1  and   liminf{𝑎𝑛} = inf(𝐸) = −1. 

 

Fatou’s lemma: Let {𝑓𝑛} be a sequence of nonnegative measurable functions on 

𝐸.  If 𝑓𝑛 → 𝑓 pointwise a.e. on 𝐸, then 

                         ∫ 𝑓 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛𝐸𝐸
. 

 

Proof:  Since ∫ 𝑓 = 0
𝐴

, if 𝑚(𝐴) = 0, we can assume that 𝑓𝑛 → 𝑓 pointwise 

on all of 𝐸. 

𝑓 is nonnegative and measurable because it’s the pointwise limit of nonnegative, 

measurable functions. 

To prove the theorem it is enough to prove that  

                                ∫ ℎ ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛𝐸𝐸
 

for any bounded, measurable function of finite support for which 0 ≤ ℎ ≤ 𝑓 on 

𝐸. 

Let ℎ be a bounded, measurable function of finite support for which 0 ≤ ℎ ≤ 𝑓 

and |ℎ| ≤ 𝑀 for some 𝑀 ≥ 0  on 𝐸.  

 

Let 𝐸0 = {𝑥 ∈ 𝐸| ℎ(𝑥) ≠ 0}. 

𝑚(𝐸0) < ∞ since ℎ has finite support. 

 

Let ℎ𝑛 = min {ℎ, 𝑓𝑛} on 𝐸. 
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Notice that ℎ𝑛 is measurable and 0 ≤ ℎ𝑛 ≤ 𝑀,  and ℎ𝑛 ≡ 0 on 𝐸~𝐸0. 

If 𝑥 ∈ 𝐸, since ℎ(𝑥) ≤ 𝑓(𝑥) and 𝑓𝑛(𝑥) → 𝑓(𝑥),   ℎ𝑛(𝑥) → ℎ(𝑥). 
 

Thus ℎ𝑛(𝑥) is uniformly bounded (by 𝑀), and if we restrict {ℎ𝑛} to 𝐸0,      

𝑚(𝐸0) < ∞, then we can apply the bounded convergence theorem. 

                       lim
𝑛→∞

∫ ℎ𝑛 = lim
𝑛→∞

∫ ℎ𝑛 = ∫ ℎ = ∫ ℎ
𝐸𝐸0𝐸0𝐸

 

Since ℎ𝑛 ≡ 0 on 𝐸~𝐸0.  

 

However, for each 𝑛, ℎ𝑛 ≤ 𝑓𝑛 on 𝐸. 

Thus we have: 

                            ∫ ℎ𝑛 ≤ ∫ 𝑓𝑛𝐸
.

𝐸
 

 

Hence: 

                            ∫ ℎ = lim
𝑛→∞

∫ ℎ𝑛 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛 .
𝐸𝐸𝐸

 

 

Since this is true for all ℎ, nonnegative, measurable, bounded and 0 ≤ ℎ ≤ 𝑓 on 

𝐸 we have: 

                              ∫ 𝑓 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛𝐸𝐸
. 
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Ex.  Here’s an example where you have a strict inequality in Fatou’s lemma. 

Let 𝐸 = [0,1] and let 𝑓𝑛 = (𝑛)𝜒
(0,

1
𝑛

)
.    

{𝑓𝑛} converges to 𝑓 = 0 on [0,1].  

However ∫ 𝑓𝑛 = 1
1

0
 for all 𝑛, but ∫ 𝑓

1

0
= 0.     

Thus    0 = ∫ 𝑓
1

0
< 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛 = 1

1

0
. 

 

If we add the condition that {𝑓𝑛} is monotonically increasing then the inequality 

in Fatou’s lemma becomes an equality. 

The Monotone Convergence Theorem:  Let {𝑓𝑛} be an increasing sequence of 

nonnegative measurable functions on 𝐸.  If 𝑓𝑛 → 𝑓 pointwise a.e. on 𝐸 then 

                                  lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸𝐸

.  

 

Proof:  According to Fatou’s lemma:     ∫ 𝑓 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛𝐸𝐸
.  

 

However, for each 𝑛, 𝑓𝑛 ≤ 𝑓 a.e. on 𝐸. 

Thus  ∫ 𝑓𝑛 ≤ ∫ 𝑓
𝐸𝐸

  for each 𝑛.  

 

Therefore,  𝑙𝑖𝑚𝑠𝑢𝑝 ∫ 𝑓𝑛 ≤ ∫ 𝑓
𝐸𝐸

.  

 

Since limsup{𝑎𝑛} ≥ 𝑙𝑖𝑚𝑖𝑛𝑓{𝑎𝑛} we have: 

𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛𝐸
≤  𝑙𝑖𝑚𝑠𝑢𝑝 ∫ 𝑓𝑛 ≤ ∫ 𝑓

𝐸𝐸
≤ 𝑙𝑖𝑚𝑖𝑛𝑓 ∫ 𝑓𝑛𝐸

.  

 

Thus lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸𝐸

.         
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Corollary:  Let {𝑢𝑛} be a sequence of nonnegative measurable functions on 𝐸.  If 

𝑓 = ∑ 𝑢𝑛
∞
𝑛=1  pointwise a.e. on 𝐸, then  ∫ 𝑓 = ∑ ∫ 𝑢𝑛𝐸

∞
𝑛=1𝐸

. 

 

Proof:  Let 𝑓𝑛 = ∑ 𝑢𝑘
𝑛
𝑘=1 .   

Then {𝑓𝑛} is increasing, nonnegative and measurable.   

Thus by the Monotone Convergence Theorem: 

lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸𝐸

  

lim
𝑛→∞

∫ ∑ 𝑢𝑘
𝑛
𝑘=1 = ∫ 𝑓

𝐸𝐸
  

lim
𝑛→∞

∑ ∫ 𝑢𝑘 = ∑ ∫ 𝑢𝑘 = ∫ 𝑓
𝐸𝐸

∞
𝑘=1𝐸

𝑛
𝑘=1 . 

 

 

Ex.  Let 𝑓(𝑥) =
1

1−𝑥4 = 1 + 𝑥4 + 𝑥8 + ⋯ = ∑ 𝑥4𝑘∞
𝑘=0 .  Evaluate ∫ 𝑓

1

2
0

. 

 

∫ 𝑓
1

2
0

= ∫ ∑ 𝑥4𝑘∞
𝑘=0 = ∑ ∫ 𝑥4𝑘

1

2
0

∞
𝑘=0

1

2
0

  (by the previous corollary) 

                                    = ∑
𝑥4𝑘+1

4𝑘+1
∞
𝑘=0 |𝑥=0

𝑥=
1

2     

                                    = ∑
1

(4𝑘+1)(2
(4𝑘+1)

)

∞
𝑘=0   .  
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Another application of the monotone convergence theorem is that it allows us to 

evaluate some Lebesgue integrals. 

Ex.  Evaluate the Lebesgue integral ∫
1

𝑥2𝐸
 where 𝐸 = [1, ∞).     

 

We know that if 𝑓 is bounded and measurable on a closed bounded interval 𝐷, 

then if the Riemann integral exists over 𝐷, then it’s equal to the Lebesgue integral 

over 𝐷. 

Let 𝐸𝑛 = [1, 𝑛] ,  𝑛 ∈ ℤ+   ,  and    𝑓𝑛 =
1

𝑥2      if 𝑥 ∈ 𝐸𝑛 

                                                                = 0      if 𝑥 ∈ (𝑛, ∞). 

Then {𝑓𝑛} is bounded, increasing, nonnegative and measurable.   

In addition, 𝑓𝑛 → 𝑓 pointwise on 𝐸. 

Thus by the monotone convergence theorem:    lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸𝐸

. 

But   ∫ 𝑓𝑛 = ∫ 𝑓𝑛 = ∫
1

𝑥2

𝑛

1𝐸𝑛𝐸
  (where this is a Riemann integral). 

∫
1

𝑥2

𝑛

1
= −

1

𝑥
|𝑥=1

𝑥=𝑛 = 1 −
1

𝑛
        

So  lim
𝑛→∞

∫ 𝑓𝑛 = lim
𝑛→∞

(1 −
1

𝑛
) = 1 = ∫ 𝑓

𝐸
= ∫

1

𝑥2𝐸𝐸
 . 

 

 

Def.  A nonnegative measurable function 𝑓 on a measurable set 𝐸 is said to be 

integrable over 𝑬 if ∫ 𝑓
𝐸

< ∞. 
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Prop.  Let the nonnegative function 𝑓 be integrable over 𝐸.  Then 𝑓 is finite a.e. 

on 𝐸. 

 

Proof: By Chebychev’s inequality we know: 

                       𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) ≥ 𝑛}) ≤
1

𝑛
∫ 𝑓

𝐸
. 

 

By monotonicity we know: 

𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) = ∞}) ≤ 𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) > 𝑛}) ≤
1

𝑛
∫ 𝑓.

𝐸

 

 

But ∫ 𝑓
𝐸

< ∞,  so 𝑚({𝑥 ∈ 𝐸| 𝑓(𝑥) = ∞}) = 0,thus 𝑓 is finite a.e. on 𝐸. 

 

Beppo Levi’s Lemma: Let {𝑓𝑛} be an increasing sequence of nonnegative 

measurable functions on 𝐸.  If the sequence of integrals {∫ 𝑓𝑛}
𝐸

 is bounded, 

then {𝑓𝑛} converges pointwise on 𝐸 to a measurable function 𝑓 that is finite a.e. 

on 𝐸 and lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸𝐸

< ∞.  

 

Proof:   Let 𝑓(𝑥) = lim
𝑛→∞

𝑓𝑛(𝑥)   for 𝑥 ∈ 𝐸.  

 By monotone convergence:      lim
𝑛→∞

∫ 𝑓𝑛 = ∫ 𝑓
𝐸𝐸

< ∞ ;                                    

 since  {∫ 𝑓𝑛}
𝐸

 is bounded.                                                                                                   

𝑓 is finite a.e. on 𝐸 since ∫ 𝑓
𝐸

< ∞.   


