The Lebesgue Integral
$$\int_E f: f \ge 0$$

Def. A measurable function with domain E has **finite support** if $m(\{x \in E \mid f(x) \neq 0\}) < \infty$.

Let $E_0 = \{x \in E \mid f(x) \neq 0\}$ with $m(E_0) < \infty$. If f is bounded and measurable on E we can define:

$$\int_E f = \int_{E_0} f.$$

So what do we do if $m(E_0) = \infty$ or $m(E_0) < \infty$ but f is not bounded?

Def. Let f be a nonnegative measurable function on E. Let $H_E(f) = \{\text{bounded measurable functions of finite support} | 0 \le h \le f \text{ on } E\}.$ we define $\int_E f$ by

$$\int_E f = \sup \left\{ \int_E h \middle| h \in H_E(f) \right\}.$$

Notice that $\int_E f$ can be finite or ∞ .

Chebychev's inequality: Let f be a nonnegative measurable function on E. Then for any a > 0,

 ψ_n is a bounded, measurable function of finite support with

$$a(m(E_{a,n})) = \int_E \psi_n$$
 and $0 \le \psi_n \le f$ on E for all n .

Notice that:
$$E_a = \bigcup_{n=1}^{\infty} E_{a,n}$$
 and $E_{a,n+1} \supseteq E_{a,n}$.
Thus $m(E_a) = \lim_{n \to \infty} m(\bigcup_{n=1}^{\infty} E_{a,n}) = \lim_{n \to \infty} m(E_{a,n})$.

Thus
$$\infty = a(m(E_a)) = a(\lim_{n\to\infty} m(E_{a,n})) = \lim_{n\to\infty} \int_E \psi_n \leq \int_E f.$$

So $m(\{x \in E \mid f(x) \ge a\}) \le \frac{1}{a} \int_E f$ because both sides are ∞ .

Now suppose $m(E_a) < \infty$.

Define $h = a(\chi_{E_a})$.

h is a bounded measurable function with finite support and $0 \le h \le f$ on E.

By definition of $\int_E f$: $\int_E f \ge \int_E h = a(m(E_a)).$

Thus
$$m(\{x \in E \mid f(x) \ge a\}) \le \frac{1}{a} \int_E f.$$

Prop: Let f be a nonnegative measurable function on E. Then

$$\int_E f = 0$$
 if and only if $f = 0$ a.e. on *E*.

Proof: Assume $\int_E f = 0$.

Let $E_{\frac{1}{n}} = \{x \in E \mid f(x) \ge \frac{1}{n}\}.$

Then by Chebychev's inequality:

$$m\left(E_{\frac{1}{n}}\right) \le n \int_{E} f = 0$$
 for all n .

 $\{x \in E \mid f(x) > 0\} = \bigcup_{n=1}^{\infty} E_{\frac{1}{n}} \text{ and } E_{\frac{1}{n}} \subseteq E_{\frac{1}{n+1}}. \text{ Thus}$ $\lim_{n \to \infty} m(\bigcup_{n=1}^{\infty} E_{\frac{1}{n}}) = \lim_{n \to \infty} m\left(E_{\frac{1}{n}}\right) = 0.$

Hence $m(\{x \in E | f(x) > 0\}) = 0$ and f = 0 a.e. on *E*. Now suppose f = 0 a.e. on E.

Let φ be a simple function and h be a bounded measurable function of finite support for which $0 \le \varphi \le h \le f$ on E.

Since φ is simple, $\int_E \varphi = 0$, for any $\varphi \le h$, thus $\int_E h = 0$. Since this holds for all $h \le f$, $\int_E f = 0$.

Theorem: Let f and g be nonnegative measurable functions on E. Then

- 1. for any $\alpha, \beta > 0$ $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$
- 2. if $f \leq g$ on E then

$$\int_E f \leq \int_E g.$$

Proof: First let's show $\int_E \alpha f = \alpha \int_E f$.

Let h be any bounded, measurable function of finite support and $0 \le h \le f$.

 $0 \le h \le f$ if an only if $0 \le \alpha h \le \alpha f$.

Notice that $\int_E \ lpha h = lpha \int_E \ h.$

$$\begin{split} \int_{E} & \alpha f = \sup \left\{ \int_{E} |\alpha h| |\alpha h \text{ bounded, measuable, of finite support and} \\ & 0 \leq \alpha h \leq \alpha f \text{ on } E \right\} \\ & = \alpha \sup \left\{ \int_{E} |h| |h \text{ bounded, measuable, of finite support and} \\ & 0 \leq h \leq f \text{ on } E \right\} \\ & = \alpha \int_{E} |f|. \end{split}$$

To prove linearity we only need to show: $\int_E (f + g) = \int_E f + \int_E g$.

Let F, G be bounded, measurable functions of finite support with $0 \le F \le f$ and $0 \le G \le g$. Then $0 \le F + G \le f + g$ and F + G is bounded, measurable, and finite support.

 $\int_E F + \int_E G = \int_E (F + G) \le \int_E (f + g) \text{ for all } 0 \le F \le f \text{ and } 0 \le G \le g$ that are bounded, measurable, and of finite support.

Thus $\int_E f + \int_E g \leq \int_E (f + g).$

By definition:

$$\int_{E} (f+g) = \sup \left\{ \int_{E} l \mid l \text{ bounded, measurable, of finite support} \\ and \ 0 \le l \le f+g \text{ on } E \right\}.$$

Let's show that $\int_E l \leq \int_E f + \int_E g$.

Let
$$h = \min \{f, l\}$$
 and $k = l - h$ on E .

Notice if $x \in E$ and $l(x) \leq f(x)$ then $k(x) = 0 \leq g(x)$.

If l(x) > f(x) then $k(x) = l(x) - f(x) \le g(x)$ since $0 \le l \le f + g$. Thus $h(x) \le g(x)$ on E.

Both h and k are bounded, measurable function of finite support. Thus we have: $0 \le h \le f$, $0 \le k \le g$ and l = h + k on E.

So
$$\int_E l = \int_E h + \int_E k \le \int_E f + \int_E g.$$

Thus $\int_E (f + g) \leq \int_E f + \int_E g$ and hence $\int_E (f + g) = \int_E f + \int_E g$.

To prove monotonicity: let h be any bounded, measurable function of finite support where $0 \le h \le f$ on E.

But since $f \leq g$ then $h \leq g$ on E.

By definition of $\int_E g$, $\int_E h \leq \int_E g$.

But
$$\int_E f = \sup \{\int_E h\}$$
 so $\int_E f \leq \int_E g$.

Theorem: Let f be a nonnegative measurable function on E. If A and B are disjoint measurable subsets of E, then

$$\int_{A\cup B} f = \int_A f + \int_B f.$$

In particular, if E_0 is a subset of E of measure 0, then

$$\int_E f = \int_{E \sim E_0} f.$$

Proof: The first relationship follows from: $f = (f)(\chi_A) + (f)(\chi_B)$ and the fact that $\int_E (f)(\chi_A) = \int_A f$.

 $\int_{E} f = \int_{E \sim E_0} f$ follows from the first relationship and the fact that $\int_{E_0} f = 0$ since $m(E_0) = 0$.

Recall that if $\{a_n\}$ is a sequence of real numbers then the limit superior of $\{a_n\}$, denoted by $\limsup\{a_n\}$, is given by:

$$\operatorname{limsup}\{a_n\} = \lim_{n \to \infty} \sup\{a_k | \ k \ge n\}.$$

The limit inferior of $\{a_n\}$, denoted by $\liminf\{a_n\}$, is given by:

$$\mathsf{liminf}\{a_n\} = \lim_{n \to \infty} \inf\{a_k | \ k \ge n\}.$$

Another way to think of these notions is to take all subsequential limits of $\{a_n\}$ and call that set E.

$$limsup\{a_n\} = sup(E)$$
$$liminf\{a_n\} = inf(E)$$

If $\{a_n\}$ has a limit l, then $\lim \{a_n\} = \lim \{a_n\} = l$.

Ex. Let
$$a_{3n-2} = \frac{1}{n}$$
, $a_{3n-1} = 1 - \frac{1}{n}$, $a_{3n} = -\frac{n}{n+1}$.
 $\{1,0,-\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{2}{3},\frac{1}{3},\frac{2}{3},-\frac{3}{4},\dots\}; E = \{-1,0,1\}.$

Thus $\lim \sup\{a_n\} = \sup(E) = 1$ and $\lim \inf\{a_n\} = \inf(E) = -1$.

Fatou's lemma: Let $\{f_n\}$ be a sequence of nonnegative measurable functions on E. If $f_n \to f$ pointwise a.e. on E, then

$$\int_E f \leq liminf \int_E f_n.$$

Proof: Since $\int_A f = 0$, if m(A) = 0, we can assume that $f_n \to f$ pointwise on all of E.

f is nonnegative and measurable because it's the pointwise limit of nonnegative, measurable functions.

To prove the theorem it is enough to prove that

$$\int_{E} h \leq liminf \int_{E} f_{n}$$

for any bounded, measurable function of finite support for which $0 \le h \le f$ on E.

Let h be a bounded, measurable function of finite support for which $0 \le h \le f$ and $|h| \le M$ for some $M \ge 0$ on E.

Let $E_0 = \{x \in E \mid h(x) \neq 0\}.$

 $m(E_0) < \infty$ since h has finite support.

Let
$$h_n = \min \{h, f_n\}$$
 on E .

Notice that h_n is measurable and $0 \le h_n \le M$, and $h_n \equiv 0$ on $E \sim E_0$. If $x \in E$, since $h(x) \le f(x)$ and $f_n(x) \to f(x)$, $h_n(x) \to h(x)$.

Thus $h_n(x)$ is uniformly bounded (by M), and if we restrict $\{h_n\}$ to E_0 , $m(E_0) < \infty$, then we can apply the bounded convergence theorem.

$$\lim_{n\to\infty}\int_E h_n = \lim_{n\to\infty}\int_{E_0}h_n = \int_{E_0}h = \int_E h$$

Since $h_n \equiv 0$ on $E \sim E_0$.

However, for each n, $h_n \leq f_n$ on E.

Thus we have:

$$\int_E h_n \leq \int_E f_n$$

Hence:

$$\int_E h = \lim_{n \to \infty} \int_E h_n \le liminf \int_E f_n$$

Since this is true for all h, nonnegative, measurable, bounded and $0 \le h \le f$ on E we have:

$$\int_E f \leq liminf \int_E f_n.$$

Ex. Here's an example where you have a strict inequality in Fatou's lemma.

Let
$$E = [0,1]$$
 and let $f_n = (n)\chi_{(0,\frac{1}{n})}$.
 $\{f_n\}$ converges to $f = 0$ on $[0,1]$.
However $\int_0^1 f_n = 1$ for all n , but $\int_0^1 f = 0$.
Thus $0 = \int_0^1 f < liminf \int_0^1 f_n = 1$.

If we add the condition that $\{f_n\}$ is monotonically increasing then the inequality in Fatou's lemma becomes an equality.

The Monotone Convergence Theorem: Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E. If $f_n \to f$ pointwise a.e. on E then

$$\lim_{n\to\infty}\int_E f_n = \int_E f.$$

Proof: According to Fatou's lemma: $\int_E f \leq liminf \int_E f_n$.

However, for each $n, f_n \leq f$ a.e. on E.

Thus $\int_E f_n \leq \int_E f$ for each n.

Therefore, $limsup \int_E f_n \leq \int_E f$.

Since $limsup\{a_n\} \ge liminf\{a_n\}$ we have:

 $liminf \int_E f_n \leq limsup \int_E f_n \leq \int_E f \leq liminf \int_E f_n.$

Thus $\lim_{n\to\infty}\int_E f_n = \int_E f$.

Corollary: Let $\{u_n\}$ be a sequence of nonnegative measurable functions on E. If $f = \sum_{n=1}^{\infty} u_n$ pointwise a.e. on E, then $\int_E f = \sum_{n=1}^{\infty} \int_E u_n$.

Proof: Let $f_n = \sum_{k=1}^n u_k$.

Then $\{f_n\}$ is increasing, nonnegative and measurable.

Thus by the Monotone Convergence Theorem:

$$\lim_{n \to \infty} \int_E f_n = \int_E f$$

$$\lim_{n \to \infty} \int_E \sum_{k=1}^n u_k = \int_E f$$

$$\lim_{n \to \infty} \sum_{k=1}^n \int_E u_k = \sum_{k=1}^\infty \int_E u_k = \int_E f.$$

Ex. Let
$$f(x) = \frac{1}{1-x^4} = 1 + x^4 + x^8 + \dots = \sum_{k=0}^{\infty} x^{4k}$$
. Evaluate $\int_0^{\frac{1}{2}} f$.

$$\int_{0}^{\frac{1}{2}} f = \int_{0}^{\frac{1}{2}} \sum_{k=0}^{\infty} x^{4k} = \sum_{k=0}^{\infty} \int_{0}^{\frac{1}{2}} x^{4k} \text{ (by the previous corollary)}$$
$$= \sum_{k=0}^{\infty} \frac{x^{4k+1}}{4k+1} \Big|_{x=0}^{x=\frac{1}{2}}$$
$$= \sum_{k=0}^{\infty} \frac{1}{(4k+1)(2^{(4k+1)})} .$$

Another application of the monotone convergence theorem is that it allows us to evaluate some Lebesgue integrals.

Ex. Evaluate the Lebesgue integral
$$\int_E \frac{1}{x^2}$$
 where $E = [1, \infty)$.

We know that if f is bounded and measurable on a closed bounded interval D, then if the Riemann integral exists over D, then it's equal to the Lebesgue integral over D.

Let
$$E_n = [1, n]$$
, $n \in \mathbb{Z}^+$, and $f_n = \frac{1}{x^2}$ if $x \in E_n$
= 0 if $x \in (n, \infty)$.

Then $\{f_n\}$ is bounded, increasing, nonnegative and measurable.

In addition, $f_n \rightarrow f$ pointwise on E.

Thus by the monotone convergence theorem: $\lim_{n \to \infty} \int_E f_n = \int_E f$.

But $\int_E f_n = \int_{E_n} f_n = \int_1^n \frac{1}{x^2}$ (where this is a Riemann integral).

$$\int_{1}^{n} \frac{1}{x^{2}} = -\frac{1}{x} |_{x=1}^{x=n} = 1 - \frac{1}{n}$$

So
$$\lim_{n \to \infty} \int_{E} f_n = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = 1 = \int_{E} f = \int_{E} \frac{1}{x^2}$$
.

Def. A nonnegative measurable function f on a measurable set E is said to be **integrable over** E if $\int_{E} f < \infty$.

Prop. Let the nonnegative function f be integrable over E. Then f is finite a.e. on E.

Proof: By Chebychev's inequality we know:

$$m(\{x \in E \mid f(x) \ge n\}) \le \frac{1}{n} \int_E f.$$

By monotonicity we know:

$$m(\{x \in E \mid f(x) = \infty\}) \le m(\{x \in E \mid f(x) > n\}) \le \frac{1}{n} \int_{E} f.$$

But $\int_E f < \infty$, so $m(\{x \in E \mid f(x) = \infty\}) = 0$, thus f is finite a.e. on E.

Beppo Levi's Lemma: Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E. If the sequence of integrals $\{\int_E f_n\}$ is bounded, then $\{f_n\}$ converges pointwise on E to a measurable function f that is finite a.e. on E and $\lim_{n\to\infty} \int_E f_n = \int_E f < \infty$.

Proof: Let $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in E$.

By monotone convergence: $\lim_{n\to\infty} \int_E f_n = \int_E f < \infty$; since $\{\int_E f_n\}$ is bounded. f is finite a.e. on E since $\int_E f < \infty$.