The Lebesgue Integral
$$
\int_E f
$$
: f Bounded, $m(E) < \infty$

Note: From now on integration will mean Lebesgue integration unless otherwise specified.

Let $\psi=\sum_{i=1}^n a_i \chi_{E_i}$ $\sum\limits_{i=1}^n a_i \chi_{E_i}$ on E , where $E_i = \psi^{-1}(a_i) = \{x \in E | \psi(x) = a_i\}$ Be a simple function $\left({a_i}'s\right.$ are distinct and $\left\{E_i\right\}$ disjoint).

Def. For a simple function ψ defined on a set of finite measure E , define

$$
\int_E \psi = \sum_{i=1}^n a_i(m(E_i)).
$$

Notice that this definition of $\int_E \;\; \psi$ allows us to evaluate the following integral.

Ex. Let
$$
f(x) = 1
$$
 if $x \in \mathbb{Q} \cap [0,1] = E_1$

\n $= 0$ if $[0,1] \sim E_1$.

\nEvaluate $\int_{[0,1]} f$.

Let $E_1 = \mathbb{Q} \cap [0,1]$ and $E_2 = [0,1] \sim E_1$, then we can write: $f(x) = 1(\chi_{E_1}) + 0(\chi_{E_2}) = \chi_{E_2}.$ Thus, $\int_{[0,1]}f=1\left(m(\chi_{E_1})\right)=0.$

Lemma: Let $\{E_i\}_{i=1}^n$ be a finite disjoint collection of measurable subsets ${\sf of}$ a set of finite measure E. For $1 \leq i \leq n$, let a_i be a real number. If

$$
\varphi = \sum_{i=1}^n a_i \chi_{E_i}
$$
 on E then $\int_E \varphi = \sum_{i=1}^n a_i (m(E_i)).$

Proof: The issue here is that $\{a_i\}$ may not be distinct (i.e., φ is not written in canonical form). If we rewrite φ in canonical form the result readily follows.

Prop. Let φ and ψ be simple function defined on a set of finite measure E. Then

- 1. for $\alpha, \beta \in \mathbb{R}$ $\int_E (\alpha \varphi + \beta \psi) = \alpha \int_E \varphi + \beta \int_E \psi$.
- 2. if $\varphi \leq \psi$ on E then

$$
\int_E \varphi \leq \int_E \psi.
$$

Proof: Since φ and ψ are simple we can find a finite disjoint collection of sets $\{E_i\}_{i=1}^n$ such that φ and ψ are constant on each E_i and $E=\bigcup_{i=1}^n E_i$ $_{i=1}^n E_i$.

For each $1 \leq i \leq n$ let: $\varphi(x) = a_i$ and $\psi(x) = b_i$ for $x \in E_i$. By the preceding lemma:

$$
\int_E \varphi = \sum_{i=1}^n a_i(m(E_i)) \text{ and } \int_E \psi = \sum_{i=1}^n b_i(m(E_i)).
$$

The simple function $\alpha \varphi + \beta \psi$ has:

$$
(\alpha \varphi + \beta \psi)(x) = \alpha a_i + \beta b_i \quad \text{for } x \in E_i.
$$

Again by the preceding lemma we have:

$$
\int_{E} (\alpha \varphi + \beta \psi) = \sum_{i=1}^{n} (\alpha a_{i} + \beta b_{i}) (m(E_{i}))
$$

= $\alpha \sum_{i=1}^{n} (a_{i}) (m(E_{i})) + \beta \sum_{i=1}^{n} (b_{i}) (m(E_{i}))$
= $\alpha \int_{E} \varphi + \beta \int_{E} \psi$.

For the second part, let $g = \psi - \varphi \ge 0$. By the first part: $\int_E \psi - \int_E \varphi = \int_E (\psi - \varphi) = \int_E g \ge 0$ since $q \geq 0$.

Thus $\int_E \psi \ge \int_E \varphi$.

Notice that a step function is an example of a simple function (where E_i is an interval). Since the measure of an interval is its length, we can see that the definition of **the Lebesgue integral and Riemann integral agree for step functions.**

Let f be a bounded real valued function defined on a set of finite measure E . We define the lower and upper Lebesgue integrals of f by:

Lower Lebesgue Integral of f **=** $\sup \{\int_E \varphi | \varphi \text{ is simple and } \varphi \leq f\}$ **Upper Lebesgue Integral of** $f= \inf\bigl\{ \int_E \; \; \varphi \, | \; \varphi \; is \; simple \; and \; \varphi \geq f \bigl\}.$

Since f is bounded, by the monotonicity property (if $\varphi \leq \psi$ then $\int_E \varphi \leq \int_E \psi$), the lower and upper integrals are finite and the upper integral is always at least as large as the lower integral.

Def. A bounded function f on a domain E of finite measure is said to be **Lebesgue integrable over** E if its upper and lower Lebesgue integral over E are equal. That common value is called the Lebesgue integral of f over E , denoted by $\int_E f$.

Theorem: Let f be a bounded function defined on a closed, bounded interval $[a, b]$. If f is Riemann integrable over $[a, b]$, then it is Lebesgue integrable over $[a, b]$ and the two integrals are equal.

Proof: Each step function is a simple function and the Riemann and Lebesgue integrals agree for step functions.

Theorem: Let f be a bounded measurable function on a set of finite measure E . Then f is integrable over E .

Proof: Let $n \in \mathbb{Z}^+$.

By the Simple Approximation Theorem with $\epsilon = \frac{1}{n}$ $\frac{1}{n}$ there are two simple functions φ_n , ψ_n on E with

$$
\varphi_n \le f \le \psi_n \quad \text{and} \quad 0 \le \psi_n - \varphi_n \le \frac{1}{n}, \quad \text{on } E.
$$

Thus we have:

$$
0 \leq \int_E \psi_n - \int_E \varphi_n = \int_E (\psi_n - \varphi_n) \leq \frac{1}{n} (m(E)).
$$

Now notice that:

$$
0 \le \inf \Biggl\{ \int_E \varphi \Big| \varphi \text{ is simple and } \varphi \ge f \Biggr\}
$$

$$
-\sup \Biggl\{ \int_E \varphi \Big| \varphi \text{ is simple and } \varphi \le f \Biggr\}
$$

$$
\le \int_E \psi_n - \int_E \varphi_n \le \frac{1}{n} (m(E)).
$$

Now let n go to ∞ ,

so the upper and lower integrals are equal and f is integrable.

Theorem: Let f and g be bounded measurable function on a set of finite measure E . Then

- 1. for $\alpha, \beta \in \mathbb{R}$, $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$.
- 2. if $f \leq g$ on E then

$$
\int_E f \le \int_E g.
$$

Proof: $\alpha f + \beta g$ is a bounded measurable function on E because f and g are, hence it's integrable.

First let's show $\int_E \alpha f = \alpha \int_E f$.

If $\alpha > 0$ then

$$
\int_E \alpha f = \inf_{\psi \ge \alpha f} \int_E \psi = (\alpha) \inf_{\frac{\psi}{\alpha} \ge f} \int_E \frac{\psi}{\alpha} = \alpha \int_E f.
$$

If $\alpha < 0$ then

$$
\int_E \alpha f = \inf_{\psi \ge \alpha f} \int_E \psi = (\alpha) \sup_{\frac{\psi}{\alpha} \le f} \int_E \frac{\psi}{\alpha} = \alpha \int_E f.
$$

To establish linearity we just need to show $\int_E (f + g) = \int_E f + \int_E g.$

Let ψ_1 and ψ_2 be simple functions with $f \le \psi_1$ and $g \le \psi_2$ on E. $\psi_1 + \psi_2$ is simple and $f + g \le \psi_1 + \psi_2$ on E. Thus $\int_E (f+g) \leq \int_E \psi_1 + \psi_2 = \int_E \psi_1 + \int_E \psi_2$.

$$
\text{So } \int_E (f+g) \leq \inf_{\psi_1 \geq f} \inf_{\psi_2 \geq g} (\int_E \psi_1 + \int_E \psi_2) = \int_E f + \int_E g.
$$

Similarly, if φ_1 and φ_2 are simple functions with $\varphi_1 \leq f$ and $\varphi_2 \leq g$ we get $\int_E (f+g) \geq \int_E f + \int_E g.$

Thus $\int_E (f+g) = \int_E f + \int_E g$.

To prove monotonicity assume $f \le g$ on E and let $h = g - f \ge 0$.

By linearity: $\int_E g - \int_E f = \int_E (f - g) = \int_E h \ge 0$. So $\int_E f \leq \int_E g$.

Corollary: Let f be a bounded measurable function on a set of finite measure E . Suppose A and B are disjoint measurable subsets of E . Then:

$$
\int_{A\cup B} f = \int_A f + \int_B f.
$$

Proof: $(f)(\chi_A)$ and $(f)(\chi_B)$ are bounded measurable functions on E and $f = (f)(\chi_A) + (f)(\chi_B).$

For any bounded measurable subset $E_1 \subseteq E$

$$
\int_{E_1} f = \int_E (f)(\chi_{E_1}).
$$

Thus:
$$
\int_{A \cup B} f = \int_{E} (f)(\chi_{A \cup B}) = \int_{E} [(f)(\chi_{A}) + (f)(\chi_{B})]
$$

= $\int_{E} (f)(\chi_{A}) + \int_{E} (f)(\chi_{B}) = \int_{A} f + \int_{B} f$.

Corollary: Let f be a bounded measurable function on a set of finite measure E . Then $\left| \int_E f \right| \leq \int_E |f|$.

Proof: $|f|$ is bounded and measurable, hence integrable. In addition:

$$
-|f| \le f \le |f|.
$$

Thus $-\int_E |f| \leq \int_E f \leq \int_E |f| \Rightarrow \left| \int_E f \right| \leq \int_E |f|.$

Prop. Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure E. If $f_n \to f$ uniformly on E, then

$$
\lim_{n\to\infty} \int_E f_n = \int_E f.
$$

Proof: Since $f_n \to f$ uniformly on E and each f_n is bounded, the limit f must be bounded.

 f is measurable because it's the pointwise limit of a sequence of measurable functions (uniform convergence implies pointwise convergence).

Let $\epsilon > 0$. Choose N such that if $n \geq N$ then:

$$
|f - f_n| < \frac{\epsilon}{m(E)} \quad \text{on } E.
$$

By linearity and monotonicity:

$$
|\int_{E} f - \int_{E} f_{n}| = |\int_{E} (f - f_{n})| \leq \int_{E} |f - f_{n}| \leq (\frac{\epsilon}{m(E)}) (m(E)) = \epsilon.
$$

Thus $\lim_{n \to \infty} \int_{E} f_{n} = \int_{E} f$.

Ex. We saw in the example:

Let
$$
f_n(x) = 0
$$
 if $\frac{1}{n} < x \le 1$ or $x = 0$
= n if $0 < x \le \frac{1}{n}$.

$$
\lim_{n \to \infty} \int_0^1 f_n = 1, \text{ but } \int_0^1 f = 0. \text{ So } \lim_{n \to \infty} \int_0^1 f_n \ne \int_0^1 f.
$$

The "problem" here is that $f_n \to f = 0$ pointwise, but not uniformly.

The Bounded Convergence Theorem: Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure E. Suppose $\{f_n\}$ is uniformly pointwise bounded on E , i.e. there is a number $M\geq 0$ such that $|f_n|\leq M$ on E for all n. If $f_n \to f$ pointwise on E then

$$
\lim_{n\to\infty} \int_E f_n = \int_E f.
$$

Proof: Since $f_n \to f$ pointwise on E and f_n is measurable for all n , f is measurable.

Since $|f_n| \leq M$ on E for all n , $|f| \leq M$.

So f is bounded and measurable on E , thus it's integrable over E .

By Egoroff's theorem we know that $f_n \to f$ uniformly on $B \subseteq E$, where $m(E \sim B)$ is "small".

We must show that for all $\epsilon>0$ there exists an $N\in\mathbb{Z}^+$ such that if $\,n\geq N$ then $|\int_E f_n - \int_E f| < \epsilon$.

Notice that:

$$
\int_{E} f_n - \int_{E} f = \int_{E} (f_n - f) = \int_{B} (f_n - f) + \int_{(E \sim B)} (f_n - f)
$$

$$
= \int_{B} (f_n - f) + \int_{E \sim B} f_n + \int_{E \sim B} -f.
$$

Thus we have:

$$
\begin{aligned} |\int_E f_n - \int_E f| &= |\int_B (f_n - f) + \int_{E \sim B} f_n + \int_{E \sim B} -f| \\ &\le \int_B |(f_n - f)| + \int_{E \sim B} |f_n| + \int_{E \sim B} |f| -f| \\ &\le \int_B |f_n - f| + 2M \big(m(E \sim B) \big). \end{aligned}
$$

Let $\epsilon > 0$. By Egoroff's theorem we can choose B so that $f_n \to f$ uniformly on *B*, and $m(E \sim B) < \frac{\epsilon}{4M}$ $rac{\epsilon}{4M}$.

Since $f_n \to f$ uniformly on B, there exists an N such that if $n \geq N$ then

$$
|f_n - f| < \frac{\epsilon}{2(m(E))} \text{ on } B.
$$

Thus we have:

$$
\begin{aligned} \left| \int_E f_n - \int_E f \right| &\leq \int_B |f_n - f| + 2M \big(m(E \sim B) \big) \\ &\leq \frac{\epsilon}{2(m(E))} \big(m(B) \big) + 2M \left(\frac{\epsilon}{4M} \right) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}
$$

Thus if $f_n \to f$ pointwise (but not uniformly) on E , and $\{f_n\}$ are uniformly bounded then we do have lim $\lim_{n\to\infty} \int_E f_n = \int_E f$.

Ex. Let $f_n(x) = x^n$ $0 \le x \le 1$. Then $f_n \to f$ pointwise where $f(x) = 0$ if $0 \le x < 1$ $= 1$ if $x = 1$.

 $\{f_n\}$ does not converge uniformly to f , but $|f_n(x)| \leq 1$ for all $0 \le x \le 1$, so $\{f_n\}$ is uniformly pointwise bounded on [0,1]. Thus by the previous theorem lim $\lim_{n\to\infty} \int_{[0,1]} f_n = \int_{[0,1]} f$.

In fact we can check this with the following calculation:

$$
\int_0^1 x^n = \frac{x^{n+1}}{n+1} \Big|_{x=0}^{x=1} = \frac{1}{n+1}; \quad \text{Thus } \lim_{n \to \infty} \int_0^1 x^n = \lim_{n \to \infty} \frac{1}{n+1} = 0
$$

$$
\int_0^1 f = 0 \text{ so } \lim_{n \to \infty} \int_{[0,1]} f_n = \int_{[0,1]} f.
$$

.