The Lebesgue Integral
$$\int_E f: f$$
 Bounded, $m(E) < \infty$

Note: From now on integration will mean Lebesgue integration unless otherwise specified.

Let $\psi = \sum_{i=1}^{n} a_i \chi_{E_i}$ on E, where $E_i = \psi^{-1}(a_i) = \{x \in E \mid \psi(x) = a_i\}$ Be a simple function $(a_i's \text{ are distinct and } \{E_i\} \text{ disjoint}).$

Def. For a simple function ψ defined on a set of finite measure E , define

$$\int_E^{\cdot} \psi = \sum_{i=1}^n a_i(m(E_i)).$$

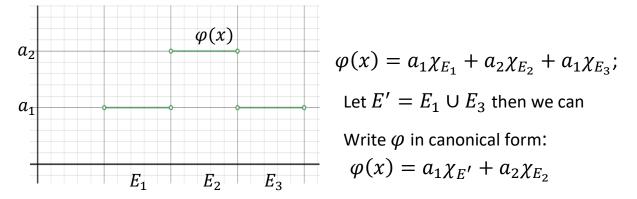
Notice that this definition of $\int_E \psi$ allows us to evaluate the following integral.

Ex. Let
$$f(x) = 1$$
 if $x \in \mathbb{Q} \cap [0,1] = E_1$
= 0 if $[0,1] \sim E_1$.
Evaluate $\int_{[0,1]} f$.

Let $E_1 = \mathbb{Q} \cap [0,1]$ and $E_2 = [0,1] \sim E_1$, then we can write: $f(x) = 1(\chi_{E_1}) + 0(\chi_{E_2}) = \chi_{E_2}.$ Thus, $\int_{[0,1]} f = 1(m(\chi_{E_1})) = 0.$ Lemma: Let $\{E_i\}_{i=1}^n$ be a finite disjoint collection of measurable subsets of a set of finite measure E. For $1 \le i \le n$, let a_i be a real number. If

$$\varphi = \sum_{i=1}^{n} a_i \chi_{E_i}$$
 on E then $\int_E \varphi = \sum_{i=1}^{n} a_i(m(E_i))$.

Proof: The issue here is that $\{a_i\}$ may not be distinct (i.e., φ is not written in canonical form). If we rewrite φ in canonical form the result readily follows.

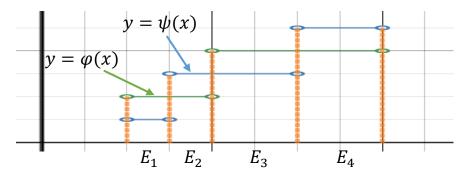


Prop. Let φ and ψ be simple function defined on a set of finite measure E. Then

- 1. for $\alpha, \beta \in \mathbb{R}$ $\int_E (\alpha \varphi + \beta \psi) = \alpha \int_E \varphi + \beta \int_E \psi$.
- 2. if $\varphi \leq \psi$ on *E* then

$$\int_E \varphi \leq \int_E \psi.$$

Proof: Since φ and ψ are simple we can find a finite disjoint collection of sets $\{E_i\}_{i=1}^n$ such that φ and ψ are constant on each E_i and $E = \bigcup_{i=1}^n E_i$.



For each $1 \le i \le n$ let: $\varphi(x) = a_i$ and $\psi(x) = b_i$ for $x \in E_i$. By the preceding lemma:

$$\int_E \varphi = \sum_{i=1}^n a_i(m(E_i)) \text{ and } \int_E \psi = \sum_{i=1}^n b_i(m(E_i)).$$

The simple function $\alpha \varphi + \beta \psi$ has:

$$(\alpha \varphi + \beta \psi)(x) = \alpha a_i + \beta b_i \quad \text{for } x \in E_i$$

Again by the preceding lemma we have:

$$\begin{split} \int_E (\alpha \varphi + \beta \psi) &= \sum_{i=1}^n (\alpha a_i + \beta b_i) \big(m(E_i) \big) \\ &= \alpha \sum_{i=1}^n (a_i) \big(m(E_i) \big) + \beta \sum_{i=1}^n (b_i) \big(m(E_i) \big) \\ &= \alpha \int_E \varphi + \beta \int_E \psi. \end{split}$$

For the second part, let $g=\psi-arphi\geq 0.$

By the first part: $\int_E \psi - \int_E \varphi = \int_E (\psi - \varphi) = \int_E g \ge 0$ since $g \ge 0$.

Thus $\int_E \psi \geq \int_E \varphi$.

Notice that a step function is an example of a simple function (where E_i is an interval). Since the measure of an interval is its length, we can see that the definition of **the Lebesgue integral and Riemann integral agree for step functions.**

Let f be a bounded real valued function defined on a set of finite measure E. We define the lower and upper Lebesgue integrals of f by:

Lower Lebesgue Integral of $f = \sup \{ \int_E \varphi | \varphi \text{ is simple and } \varphi \leq f \}$ Upper Lebesgue Integral of $f = \inf \{ \int_E \varphi | \varphi \text{ is simple and } \varphi \geq f \}.$

Since f is bounded, by the monotonicity property (if $\varphi \leq \psi$ then $\int_E \varphi \leq \int_E \psi$), the lower and upper integrals are finite and the upper integral is always at least as large as the lower integral.

Def. A bounded function f on a domain E of finite measure is said to be **Lebesgue integrable over** E if its upper and lower Lebesgue integral over E are equal. That common value is called the Lebesgue integral of f over E, denoted by $\int_{E} f$.

Theorem: Let f be a bounded function defined on a closed, bounded interval [a, b]. If f is Riemann integrable over [a, b], then it is Lebesgue integrable over [a, b] and the two integrals are equal.

Proof: Each step function is a simple function and the Riemann and Lebesgue integrals agree for step functions.

Theorem: Let f be a bounded measurable function on a set of finite measure E. Then f is integrable over E.

Proof: Let $n \in \mathbb{Z}^+$.

By the Simple Approximation Theorem with $\epsilon = \frac{1}{n}$ there are two simple functions φ_n , ψ_n on E with

$$\varphi_n \leq f \leq \psi_n$$
 and $0 \leq \psi_n - \varphi_n \leq \frac{1}{n}$, on E .

Thus we have:

$$0 \leq \int_E \psi_n - \int_E \varphi_n = \int_E (\psi_n - \varphi_n) \leq \frac{1}{n} (m(E)).$$

Now notice that:

$$\begin{split} 0 &\leq \inf \left\{ \int_{E} |\varphi| |\varphi| \text{ is simple and } \varphi \geq f \right\} \\ &\quad -\sup \left\{ \int_{E} |\varphi| |\varphi| \text{ is simple and } \varphi \leq f \right\} \\ &\leq \int_{E} |\psi_{n} - \int_{E} |\varphi_{n}| \leq \frac{1}{n} (m(E)) \,. \end{split}$$

Now let n go to ∞ ,

so the upper and lower integrals are equal and f is integrable.

Theorem: Let f and g be bounded measurable function on a set of finite measure E. Then

- 1. for $\alpha, \beta \in \mathbb{R}$, $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$.
- 2. if $f \leq g$ on E then

$$\int_E f \leq \int_E g.$$

Proof: $\alpha f + \beta g$ is a bounded measurable function on E because f and g are, hence it's integrable.

First let's show $\int_E \alpha f = \alpha \int_E f$.

If $\alpha > 0$ then

$$\int_E \alpha f = \inf_{\psi \ge \alpha f} \int_E \psi = (\alpha) \inf_{\frac{\psi}{\alpha} \ge f} \int_E \frac{\psi}{\alpha} = \alpha \int_E f.$$

If $\alpha < 0$ then

$$\int_E \alpha f = \inf_{\psi \ge \alpha f} \int_E \psi = (\alpha) \sup_{\frac{\psi}{\alpha} \le f} \int_E \frac{\psi}{\alpha} = \alpha \int_E f.$$

To establish linearity we just need to show $\int_E (f + g) = \int_E f + \int_E g$.

Let ψ_1 and ψ_2 be simple functions with $f \leq \psi_1$ and $g \leq \psi_2$ on E. $\psi_1 + \psi_2$ is simple and $f + g \leq \psi_1 + \psi_2$ on E. Thus $\int_F (f + g) \leq \int_F \psi_1 + \psi_2 = \int_F \psi_1 + \int_F \psi_2$.

So
$$\int_{E} (f+g) \le \inf_{\psi_1 \ge f} (\int_{E} \psi_1 + \int_{E} \psi_2) = \int_{E} f + \int_{E} g$$

Similarly, if φ_1 and φ_2 are simple functions with $\varphi_1 \leq f$ and $\varphi_2 \leq g$ we get $\int_E (f+g) \geq \int_E f + \int_E g$.

Thus $\int_E (f+g) = \int_E f + \int_E g$.

To prove monotonicity assume $f \leq g$ on E and let $h = g - f \geq 0$.

By linearity: $\int_E g - \int_E f = \int_E (f - g) = \int_E h \ge 0$. So $\int_E f \le \int_E g$.

Corollary: Let f be a bounded measurable function on a set of finite measure E. Suppose A and B are disjoint measurable subsets of E. Then:

$$\int_{A\cup B} f = \int_A f + \int_B f.$$

Proof: $(f)(\chi_A)$ and $(f)(\chi_B)$ are bounded measurable functions on E and $f = (f)(\chi_A) + (f)(\chi_B)$.

For any bounded measurable subset $E_1 \subseteq E$

$$\int_{E_1} f = \int_E (f)(\chi_{E_1}) \, .$$

Thus: $\int_{A\cup B} f = \int_{E} (f)(\chi_{A\cup B}) = \int_{E} [(f)(\chi_{A}) + (f)(\chi_{B})]$ = $\int_{E} (f)(\chi_{A}) + \int_{E} (f)(\chi_{B}) = \int_{A} f + \int_{B} f.$ Corollary: Let f be a bounded measurable function on a set of finite measure E. Then $\left|\int_{E} f\right| \leq \int_{E} |f|$.

Proof: |f| is bounded and measurable, hence integrable. In addition:

$$-|f| \le f \le |f|.$$

Thus $-\int_E |f| \le \int_E f \le \int_E |f| \Rightarrow \left| \int_E f \right| \le \int_E |f|$.

Prop. Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure E. If $f_n \to f$ uniformly on E, then

$$\lim_{n \to \infty} \int_E f_n = \int_E f.$$

Proof: Since $f_n \rightarrow f$ uniformly on E and each f_n is bounded, the limit f must be bounded.

f is measurable because it's the pointwise limit of a sequence of measurable functions (uniform convergence implies pointwise convergence).

Let $\epsilon > 0$. Choose N such that if $n \ge N$ then:

$$|f - f_n| < \frac{\epsilon}{m(E)}$$
 on E .

By linearity and monotonicity:

$$\begin{split} |\int_{E} f - \int_{E} f_{n}| &= |\int_{E} (f - f_{n})| \leq \int_{E} |f - f_{n}| \leq \left(\frac{\epsilon}{m(E)}\right) \left(m(E)\right) = \epsilon. \end{split}$$

Thus $\lim_{n \to \infty} \int_{E} f_{n} &= \int_{E} f$.

Ex. We saw in the example:

Let
$$f_n(x) = 0$$
 if $\frac{1}{n} < x \le 1$ or $x = 0$
 $= n$ if $0 < x \le \frac{1}{n}$.
 $\lim_{n \to \infty} \int_0^1 f_n = 1$, but $\int_0^1 f = 0$. So $\lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 f$.

The "problem" here is that $f_n \rightarrow f = 0$ pointwise, but not uniformly.

The Bounded Convergence Theorem: Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure E. Suppose $\{f_n\}$ is uniformly pointwise bounded on E, i.e. there is a number $M \ge 0$ such that $|f_n| \le M$ on E for all n. If $f_n \to f$ pointwise on E then

$$\lim_{n \to \infty} \int_E f_n = \int_E f$$

Proof: Since $f_n \rightarrow f$ pointwise on E and f_n is measurable for all n, f is measurable.

Since $|f_n| \leq M$ on E for all $n, |f| \leq M$.

So f is bounded and measurable on E, thus it's integrable over E.

By Egoroff's theorem we know that $f_n \to f$ uniformly on $B \subseteq E$, where $m(E \sim B)$ is "small".

We must show that for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $|\int_E f_n - \int_E f| < \epsilon$.

Notice that:

$$\int_{E} f_{n} - \int_{E} f = \int_{E} (f_{n} - f) = \int_{B} (f_{n} - f) + \int_{(E \sim B)} (f_{n} - f)$$
$$= \int_{B} (f_{n} - f) + \int_{E \sim B} f_{n} + \int_{E \sim B} -f.$$

Thus we have:

$$\begin{split} |\int_{E} f_{n} - \int_{E} f| &= |\int_{B} (f_{n} - f) + \int_{E \sim B} f_{n} + \int_{E \sim B} -f| \\ &\leq \int_{B} |(f_{n} - f)| + \int_{E \sim B} |f_{n}| + \int_{E \sim B} |-f| \\ &\leq \int_{B} |f_{n} - f| + 2M \big(m(E \sim B) \big). \end{split}$$

Let $\epsilon > 0$. By Egoroff's theorem we can choose B so that $f_n \to f$ uniformly on B, and $m(E \sim B) < \frac{\epsilon}{4M}$.

Since $f_n \to f$ uniformly on B, there exists an N such that if $n \ge N$ then

$$|f_n - f| < \frac{\epsilon}{2(m(E))}$$
 on B .

Thus we have:

$$\begin{split} |\int_{E} f_{n} - \int_{E} f| &\leq \int_{B} |f_{n} - f| + 2M \big(m(E \sim B) \big) \\ &\leq \frac{\epsilon}{2(m(E))} \big(m(B) \big) + 2M \left(\frac{\epsilon}{4M} \right) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Thus if $f_n \to f$ pointwise (but not uniformly) on E, and $\{f_n\}$ are uniformly bounded then we do have $\lim_{n \to \infty} \int_E f_n = \int_E f$.

Ex. Let $f_n(x) = x^n$ $0 \le x \le 1$. Then $f_n \to f$ pointwise where f(x) = 0 if $0 \le x < 1$ = 1 if x = 1.

 $\{f_n\}$ does not converge uniformly to f, but $|f_n(x)| \le 1$ for all $0 \le x \le 1$, so $\{f_n\}$ is uniformly pointwise bounded on [0,1]. Thus by the previous theorem $\lim_{n\to\infty} \int_{[0,1]} f_n = \int_{[0,1]} f$.

In fact we can check this with the following calculation:

$$\int_0^1 x^n = \frac{x^{n+1}}{n+1} \Big|_{x=0}^{x=1} = \frac{1}{n+1}; \text{ Thus } \lim_{n \to \infty} \int_0^1 x^n = \lim_{n \to \infty} \frac{1}{n+1} = 0$$
$$\int_0^1 f = 0 \text{ so } \lim_{n \to \infty} \int_{[0,1]} f_n = \int_{[0,1]} f.$$