Lebesgue Outer Measure

The **Lebesgue measure** of a subset of ℝ is a generalization of the length of a set. We want a Lebesgue measure, m , to satisfy the following three properties:

- 1) Each nonempty interval $I \subseteq \mathbb{R}$ is Lebesgue measurable and $m(I) = l(I) =$ length of I.
- 2) m is translation invariant. That is, If E is a Lebesgue measureable set and $t \in \mathbb{R}$, then the translate of E by t, $E + t = \{x + t | x \in E\}$, is also Lebesgue measurable and $m(E + t) = m(E)$.
- 3) If $\{E_k\}$, $k=1,2,...$, ∞ is a countable disjoint collection of Lebesgue measurable sets then

$$
m\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m(E_k).
$$

Unfortunately, it's not possible to create a set function that possesses all three properties and is defined for all subsets of $\mathbb R$. In fact, there is not even a set function defined for all subsets of $\mathbb R$ that satisfies 1 and 2 and is finitely additive.

To construct the Lebesgue measure we will start by defining a set function called an **outer measure**, denoted by m^* , that is defined on all subsets of $\mathbb{R},$ satisfies properties 1 and 2, but is countably subadditive, that is, for any collections of subsets of \mathbb{R}, E_i , disjoint or not

$$
m^* \left(\bigcup_{i=1}^{\infty} E_i \right) \le \sum_{k=1}^{\infty} m^*(E_i).
$$

We will then determine what it means for a set to be Lebesgue measurable and show that the collection of Lebesgue measurable sets forms a σ -algebra (i.e. it contains $\mathbb R$ and is closed with respect to complements and countable unions) containing the open and closed sets. We will then restrict m^* to this collection of sets and denote it by m and prove m is countably additive. m will be the Lebesgue measure.

We start by defining the length of an interval (closed, open, or half closed/open) I, $l(I)$, to be $|b - a|$, where a, b are the endpoints, if both a and *b* are finite and ∞ if either a or b is not finite.

If A is a set of real numbers, consider $\{I_k\}$, $k=1,2,...$, ∞ , where I_k is an open, bounded interval and $A\subseteq \bigcup_{k=1}^\infty I_k$ $_{k=1}^{\infty}I_{k}.$ We define the outer measure of E , $m^*(E)$ to be:

$$
m^*(E) = \inf \{ \sum_{k=1}^{\infty} l(I_k) \Big| E \subseteq \bigcup_{k=1}^{\infty} I_k \}
$$

Notice:

- a) $m^*(\phi) = 0$.
- b) If $E \subseteq F$, then $m^*(E) \le m^*(F)$ because any cover of F is also a cover of E .

Ex. Any countable set A has $m^*(A) = 0$

Let
$$
A = \{a_1, a_2, a_3, ...\}
$$
 and let $I_k = (a_k - \frac{\epsilon}{2^{k+1}}, a_k + \frac{\epsilon}{2^{k+1}})$.
\nThen $0 \le m^*(A) \le \sum_{k=1}^{\infty} l(I_k) = \sum_{k=1}^{\infty} \frac{\epsilon}{2^k} = \epsilon$.
\nThis holds for all $\epsilon > 0$ hence $m^*(A) = 0$.

Ex.
$$
m^*(\mathbb{Q}) = 0
$$
, $m^*(\mathbb{Z}) = 0$.

Prop: $m^*(I) = l(I)$

Proof: First let's show this for a bounded interval $[a, b]$.

Since the open interval $(a - \epsilon, b + \epsilon)$ contains $[a, b]$ for all $\epsilon > 0$ we have

$$
m^*([a,b]) \leq b - a + 2\epsilon.
$$

Since this is true for all $\epsilon > 0$

$$
m^*([a,b]) \leq b - a.
$$

Now let's show $m^*([a, b]) \ge b - a$:

Let $\{I_k\}$ be a set of open, bounded intervals such that:

$$
\bigcup_{k=1}^{\infty} I_k \supseteq [a, b].
$$

We will show that:

$$
\sum_{k=1}^{\infty} l(I_k) \geq b - a.
$$

By the Heine-Borel Theorem any covering of $[a, b]$ by open intervals has a finite subcover, $\{I_k\}, k=1,...,n.$ Now let's show:

$$
\sum_{k=1}^n l(I_k) \geq b - a.
$$

Since $a \in \bigcup_{k=1}^{\infty} I_k$ $_{k=1}^{\infty}$ I_k , there is at least one I_k with $a\in I_k.$ Let's call this I_k , (a_1, b_1) where $a_1 < a < b_1$.

If
$$
b_1 \ge b
$$
 then $l(I_k) \ge b_1 - a_1 > b - a$ and:

$$
\sum_{k=1}^n l(I_k) \ge b_1 - a_1 > b - a.
$$

Otherwise $b_1 \in [a, b)$, and since $b_1 \notin (a_1, b_1)$ there exists an

interval in the collection $\{I_k\}, k=1,2,...$, n , call it (a_2,b_2) distinct from (a_1, b_1) for which $b_1 \in (a_2, b_2)$, that is $a_2 < b_1 < b_2$.

If
$$
b_2 \ge b
$$
 then:
\n
$$
\sum_{k=1}^{n} l(l_k) \ge (b_1 - a_1) + (b_2 - a_2)
$$
\n
$$
= b_2 - (a_2 - b_1) - a_1 > b_2 - a_1 > b - a.
$$

Continue this process until it terminates (it must because n , the number of open intervals is finite).

Thus there is a subcollection $\{(a_k,b_k)\}, k=1,...$, m of $\{I_k\}, k=1,...\,n$ for which $a_1 < a$ while $a_{k+1} < b_k$ for $1 \leq k \leq m-1$ and $b_m > b$.

Thus
$$
\sum_{k=1}^{n} l(l_k) \ge \sum_{k=1}^{m} l(a_k, b_k)
$$

\n
$$
= (b_m - a_m) + (b_{m-1} - a_{m-1}) + \dots + (b_1 - a_1)
$$
\n
$$
= b_m - (a_m - b_{m-1}) - \dots - (a_2 - b_1) - a_1
$$
\n
$$
> b_m - a_1 > b - a.
$$
\nHence $\sum_{k=1}^{n} l(l_k) \ge b - a$ and so $\sum_{k=1}^{\infty} l(l_k) \ge b - a$.
\nThus $m^*([a, b]) = b - a$.

If *I* is any bounded interval $((a, b), [a, b), (a, b])$, then given any $\epsilon > 0$ there are two closed, bounded intervals I_1, I_2 such that

 $I_1 \subseteq I \subseteq I_2$ while, $l(I) - \epsilon < l(I_1)$ and $l(I_2) < l(I) + \epsilon$.

Thus $l(I) - \epsilon < l(I_1) = m^*(I_1) \le m^*(I) \le m^*(I_2) = l(I) + \epsilon$ since if $A \subseteq B$ then $m^*(A) \leq m^*(B)$.

This holds for all $\epsilon > 0$, thus $l(I) = m^*(I)$.

If I is unbounded, then for each natural number n , there is an interval $J \subseteq I$ with $l(J) = n$. Hence $m^*(I) \ge m^*(J) = l(J) = n$. Thus $m^*(I) = \infty$.

Prop : $m^*(A + t) = m^*(A)$, for any $t \in \mathbb{R}$.

Proof: $\,$ If $\{I_k\}, k=1,2,...$, ∞ is any collection of intervals, then $\{I_k\}$ } covers A if, and only if, $\{I_k + t\}$, $k = 1, 2, ..., \infty$ covers $A + t$.

Notice also if I_k is an open interval, so is $I_k + t$, and it has the same length.

Thus,
$$
\sum_{k=1}^{\infty} l(I_k) = \sum_{k=1}^{\infty} l(I_k + t).
$$

So $m^*(A + t) = m^*(A)$.

Prop: is countably subadditive, i.e., if $\{E_k\}$, $k=1,2,...$, ∞ is any countable collection of sets, disjoint or not, then:

$$
m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k).
$$

Proof: If one of the E_k 's has $m^*(E_k)=\infty$, then the inequality is obviously true.

So assume $m^*(E_k)$ is finite for all $k.$

Let $\epsilon > 0$.

For each k , there is a countable collection $\{I_{k,j}\}, j=1,...$, ∞ of open bounded intervals for which:

$$
E_k \subseteq \bigcup_{j=1}^{\infty} I_{k,j} \text{ and } \Sigma_{j=1}^{\infty} l(I_{k,j}) < m^*(E_k) + \frac{\epsilon}{2^k}.
$$

 $\{I_{k,j}\},$ $j,k=1,...$, ∞ is a countable collection of open bounded intervals that covers $\bigcup_{k=1}^{\infty} E_k$ $_{k=1}^{\infty}E_{k}$.

Thus:

$$
m^*(\bigcup_{k=1}^{\infty} E_k) \le \sum_{1 \le k, j < \infty} l(I_{k,j})
$$
\n
$$
= \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} l(I_{k,j})
$$
\n
$$
\le \sum_{k=1}^{\infty} (m^*(E_k) + \frac{\epsilon}{2^k})
$$
\n
$$
= \sum_{k=1}^{\infty} m^*(E_k) + \epsilon.
$$

Since this holds for all $\epsilon > 0$,

$$
m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k).
$$

Clearly, finite subadditivity follows from countable subadditivity (just let $E_k = \phi$ for $k > n$).