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Lebesgue Outer Measure 

 

 The Lebesgue measure of a subset of ℝ is a generalization of the length of 

a set. We want a Lebesgue measure, 𝑚, to satisfy the following three properties: 

1) Each nonempty interval 𝐼 ⊆ ℝ is Lebesgue measurable and              

𝑚(𝐼) = 𝑙(𝐼) = length of 𝐼. 

 

2) 𝑚 is translation invariant.  That is, If 𝐸 is a Lebesgue measureable set and 

𝑡 ∈ ℝ, then the translate of 𝐸 by 𝑡,  𝐸 + 𝑡 = {𝑥 + 𝑡| 𝑥 ∈ 𝐸}, is also 

Lebesgue measurable and 𝑚(𝐸 + 𝑡) = 𝑚(𝐸). 

 

3) If {𝐸𝑘}, 𝑘 = 1, 2, … , ∞ is a countable disjoint collection of Lebesgue 

measurable sets then  

 

𝑚 (⋃ 𝐸𝑘

∞

𝑘=1

) = ∑ 𝑚(𝐸𝑘)

∞

𝑘=1

. 

 Unfortunately, it’s not possible to create a set function that possesses all 

three properties and is defined for all subsets of ℝ. In fact, there is not even a set 

function defined for all subsets of ℝ that satisfies 1 and 2 and is finitely additive.  

 To construct the Lebesgue measure we will start by defining a set function 

called an outer measure, denoted by 𝑚∗, that is defined on all subsets of ℝ, 
satisfies properties 1 and 2, but is countably subadditive, that is, for any 

collections of subsets of ℝ, 𝐸𝑖 , disjoint or not 

  

𝑚∗ (⋃ 𝐸𝑖

∞

𝑖=1

) ≤ ∑ 𝑚∗(𝐸𝑖)

∞

𝑘=1

. 
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We will then determine what it means for a set to be Lebesgue measurable 

and show that the collection of Lebesgue measurable sets forms a 𝜎-algebra   

(i.e. it contains ℝ and is closed with respect to complements and countable 

unions) containing the open and closed sets. We will then restrict 𝑚∗ to this 

collection of sets and denote it by 𝑚 and prove 𝑚 is countably additive. 𝑚 will 

be the Lebesgue measure. 

 

We start by defining the length of an interval (closed, open, or half 

closed/open) 𝐼, 𝑙(𝐼), to be |𝑏 − 𝑎|, where 𝑎, 𝑏 are the endpoints, if both 𝑎 and 

𝑏 are finite and ∞ if either 𝑎 or 𝑏 is not finite. 

 

If 𝐴 is a set of real numbers, consider {𝐼𝑘}, 𝑘 = 1, 2, … , ∞, where 𝐼𝑘  is an 

open, bounded interval and 𝐴 ⊆ ⋃ 𝐼𝑘
∞
𝑘=1 . We define the outer measure of 𝐸,

𝑚∗(𝐸) to be: 

𝑚∗(𝐸) = inf {∑ 𝑙(𝐼𝑘)⃒𝐸 ⊆ ⋃ 𝐼𝑘

∞

𝑘=1

}

∞

𝑘=1

 

 

 

                                                                                 

 

 

Notice: 

a) 𝑚∗(𝜙) = 0. 

b) If 𝐸 ⊆ 𝐹, then 𝑚∗(𝐸) ≤ 𝑚∗(𝐹) because any cover of 𝐹 is also a 

cover of 𝐸. 

                (                        )         (                )        (  ) 

𝐸 
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Ex.   Any countable set 𝐴 has 𝑚∗(𝐴) = 0 

 Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, … } and let 𝐼𝑘 = (𝑎𝑘 −
𝜖

2𝑘+1 ,  𝑎𝑘 +
𝜖

2𝑘+1).    

 Then 0 ≤ 𝑚∗(𝐴) ≤ ∑ 𝑙(𝐼𝑘)∞
𝑘=1 = ∑

𝜖

2𝑘
∞
𝑘=1 =  𝜖.     

 This holds for all 𝜖 > 0 hence 𝑚∗(𝐴) = 0.  

 

Ex.   𝑚∗(ℚ) = 0,   𝑚∗(ℤ) = 0. 

 

Prop:    𝑚∗(𝐼) = 𝑙(𝐼) 

 

Proof:  First let’s show this for a bounded interval [𝑎, 𝑏]. 

    Since the open interval (𝑎 − 𝜖, 𝑏 + 𝜖) contains [𝑎, 𝑏] for all  

    𝜖 > 0 we have 

𝑚∗([𝑎, 𝑏]) ≤ 𝑏 − 𝑎 + 2𝜖. 

    Since this is true for all 𝜖 > 0 

𝑚∗([𝑎, 𝑏]) ≤ 𝑏 − 𝑎. 

  

Now let’s show 𝑚∗([𝑎, 𝑏]) ≥ 𝑏 − 𝑎: 

Let {𝐼𝑘} be a set of open, bounded intervals such that:  

⋃ 𝐼𝑘
∞
𝑘=1 ⊇ [𝑎, 𝑏]. 

We will show that: 

∑ 𝑙(𝐼𝑘)∞
𝑘=1 ≥ 𝑏 − 𝑎. 
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By the Heine-Borel Theorem any covering of [𝑎, 𝑏] by open intervals has a 

            finite subcover, {𝐼𝑘}, 𝑘 = 1, … , 𝑛. Now let’s show: 

 

∑ 𝑙(𝐼𝑘)𝑛
𝑘=1 ≥ 𝑏 − 𝑎. 

 

Since 𝑎 ∈ ⋃ 𝐼𝑘
∞
𝑘=1 , there is at least one 𝐼𝑘 with 𝑎 ∈ 𝐼𝑘. 

Let’s call this 𝐼𝑘 , (𝑎1, 𝑏1) where 𝑎1 < 𝑎 < 𝑏1.  

 

If 𝑏1 ≥ 𝑏 then 𝑙(𝐼𝑘) ≥ 𝑏1 − 𝑎1 > 𝑏 − 𝑎 and:  

∑ 𝑙(𝐼𝑘)𝑛
𝑘=1 ≥ 𝑏1 − 𝑎1 > 𝑏 − 𝑎.  

 

Otherwise 𝑏1 ∈ [𝑎, 𝑏), and since 𝑏1 ∉ (𝑎1, 𝑏1) there exists an  

   (       [       (         )         )        ] 

𝑎1     𝑎       𝑎2      𝑏1     𝑏2        𝑏  

interval in the collection {𝐼𝑘}, 𝑘 = 1, 2, … , 𝑛, call it (𝑎2, 𝑏2) distinct 

 from (𝑎1, 𝑏1) for which 𝑏1 ∈ (𝑎2, 𝑏2), that is 𝑎2 < 𝑏1 < 𝑏2.  

 

If 𝑏2 ≥ 𝑏 then:  

∑ 𝑙(𝐼𝑘)𝑛
𝑘=1 ≥ (𝑏1 − 𝑎1) + (𝑏2 − 𝑎2)                                                                

                               = 𝑏2 − (𝑎2 − 𝑏1) − 𝑎1 > 𝑏2 − 𝑎1 > 𝑏 − 𝑎.  

 

Continue this process until it terminates (it must because 𝑛, the 

 number of open intervals is finite).  
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Thus there is a subcollection {(𝑎𝑘 , 𝑏𝑘)}, 𝑘 = 1, … , 𝑚 of   

 {𝐼𝑘}, 𝑘 = 1, … 𝑛 for which 𝑎1 < 𝑎 while 𝑎𝑘+1 < 𝑏𝑘 for 

 1 ≤ 𝑘 ≤ 𝑚 − 1 and 𝑏𝑚 > 𝑏.  

 

Thus   ∑ 𝑙(𝐼𝑘)𝑛
𝑘=1 ≥ ∑ 𝑙(𝑎𝑘 , 𝑏𝑘)𝑚

𝑘=1  

= (𝑏𝑚 − 𝑎𝑚) + (𝑏𝑚−1 − 𝑎𝑚−1) + ⋯ + (𝑏1 − 𝑎1) 

          = 𝑏𝑚 − (𝑎𝑚 − 𝑏𝑚−1) − ⋯ − (𝑎2 − 𝑏1) − 𝑎1 

           > 𝑏𝑚 − 𝑎1 > 𝑏 − 𝑎. 

Hence   ∑ 𝑙(𝐼𝑘)𝑛
𝑘=1 ≥ 𝑏 − 𝑎 and so ∑ 𝑙(𝐼𝑘)∞

𝑘=1 ≥ 𝑏 − 𝑎. 

Thus  𝑚∗([𝑎, 𝑏]) = 𝑏 − 𝑎.  

 

If 𝐼 is any bounded interval ((𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏]), then given any 𝜖 > 0 

there are two closed, bounded intervals 𝐼1, 𝐼2 such that  

𝐼1 ⊆ 𝐼 ⊆ 𝐼2 

while,     𝑙(𝐼) − 𝜖 < 𝑙(𝐼1) and 𝑙(𝐼2) < 𝑙(𝐼) + 𝜖.  

 

 

 

 
 

 

 Thus 𝑙(𝐼) − 𝜖 < 𝑙(𝐼1) = 𝑚∗(𝐼1) ≤ 𝑚∗(𝐼) ≤ 𝑚∗(𝐼2) = 𝑙(𝐼) + 𝜖 

  since if 𝐴 ⊆ 𝐵 then 𝑚∗(𝐴) ≤ 𝑚∗(𝐵). 

 This holds for all 𝜖 > 0, thus 𝑙(𝐼) = 𝑚∗(𝐼).  

 

𝑎                                                                                      𝑏 
[       [                                                    ]       ] 

𝐼1 

𝐼2 
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 If 𝐼 is unbounded, then for each natural number 𝑛, there is an interval   

            𝐽 ⊆ 𝐼 with 𝑙(𝐽) = 𝑛. Hence 𝑚∗(𝐼) ≥ 𝑚∗(𝐽) = 𝑙(𝐽) = 𝑛. 

 Thus 𝑚∗(𝐼) = ∞. 

 

 

Prop :   𝑚∗(𝐴 + 𝑡) = 𝑚∗(𝐴), for any 𝑡 ∈ ℝ. 

 

Proof:   If {𝐼𝑘}, 𝑘 = 1, 2, … , ∞ is any collection of intervals, then {𝐼𝑘}      

            covers 𝐴 if, and only if, {𝐼𝑘 + 𝑡}, 𝑘 = 1, 2, … , ∞ covers 𝐴 + 𝑡. 

  Notice also if 𝐼𝑘 is an open interval, so is 𝐼𝑘 + 𝑡, and it has the same 

             length.  

 

 Thus, ∑ 𝑙(𝐼𝑘)∞
𝑘=1 = ∑ 𝑙(𝐼𝑘 + 𝑡)∞

𝑘=1 .  

 

 So 𝑚∗(𝐴 + 𝑡) = 𝑚∗(𝐴). 

 

 

 

 

 

Prop:    𝑚∗ is countably subadditive, i.e., if {𝐸𝑘}, 𝑘 = 1, 2, … , ∞ is         

             any countable collection of sets, disjoint or not, then: 

𝑚∗(⋃ 𝐸𝑘
∞
𝑘=1 ) ≤ ∑ 𝑚∗(𝐸𝑘)∞

𝑘=1 . 
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Proof:   If one of the 𝐸𝑘’s has 𝑚∗(𝐸𝑘) = ∞, then the inequality is           

              obviously true. 

  So assume 𝑚∗(𝐸𝑘) is finite for all 𝑘.  

           Let 𝜖 > 0.  

           For each 𝑘, there is a countable collection {𝐼𝑘,𝑗}, 𝑗 = 1, … , ∞ of open   

             bounded intervals for which: 

𝐸𝑘 ⊆ ⋃ 𝐼𝑘,𝑗
∞
𝑗=1   and   ∑ 𝑙(𝐼𝑘,𝑗)

∞
𝑗=1 < 𝑚∗(𝐸𝑘) +

𝜖

2𝑘 . 

{𝐼𝑘,𝑗}, 𝑗, 𝑘 = 1, … , ∞ is a countable collection of open bounded intervals 

that covers ⋃ 𝐸𝑘
∞
𝑘=1 .  

 

Thus: 

               𝑚∗(⋃ 𝐸𝑘
∞
𝑘=1 ) ≤ ∑ 𝑙(𝐼𝑘,𝑗)1≤𝑘,𝑗<∞   

                                         = ∑ ∑ 𝑙(𝐼𝑘,𝑗)∞
𝑗=1

∞
𝑘=1   

≤ ∑ (𝑚∗(𝐸𝑘) +
𝜖

2𝑘)∞
𝑘=1   

                                         = ∑ 𝑚∗(𝐸𝑘)∞
𝑘=1 + 𝜖. 

  

Since this holds for all 𝜖 > 0, 

                          𝑚∗(⋃ 𝐸𝑘
∞
𝑘=1 ) ≤ ∑ 𝑚∗(𝐸𝑘)∞

𝑘=1 .  

 

 Clearly, finite subadditivity follows from countable subadditivity (just let 

          𝐸𝑘 = 𝜙 for 𝑘 > 𝑛).   


