Isomorphisms

Def. Let V and W be vector spaces, and let $T: V \to W$ be linear. A function $U: W \to V$ is said to be the **inverse of** T if $TU = I_W$ and $UT = I_V$. If T has an inverse, then T is said to be **invertible**.

If T is invertible then the inverse of T is unique and denoted T^{-1} .

Linear transformations are special cases of functions. A function is invertible if and only if it is one-to-one and onto. Thus we have:

Theorem: Let $T: V \to W$ be a linear transformation where $\dim(V) = \dim(W)$ (both finite). Then T is invertible if and only if $Rank(T) = \dim(V)$.

We saw earlier that when $\dim(V) = \dim(W)$ (both finite) then $Rank(T) = \dim(V)$ is equivalent to T being one-to-one and onto.

The following holds for invertible functions T and U.

1.
$$(TU)^{-1} = U^{-1}T^{-1}$$

2. $(T^{-1})^{-1} = T$; thus T^{-1} is invertible.

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\langle a_1, a_2 \rangle) = \langle a_1 + 2a_2, a_1 + a_2 \rangle$ using the standard ordered basis for \mathbb{R}^2 . Show that $T^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T^{-1}(\langle b_1, b_2 \rangle) = \langle -b_1 + 2b_2, b_1 - b_2 \rangle$ is the inverse of T.

$$T^{-1}T(\langle a_1, a_2 \rangle) = T^{-1}(\langle a_1 + 2a_2, a_1 + a_2 \rangle)$$

$$= \langle -(a_1 + 2a_2) + 2(a_1 + a_2), (a_1 + 2a_2) - (a_1 + a_2) \rangle$$

$$= \langle a_1, a_2 \rangle.$$

$$TT^{-1}(\langle b_1, b_2 \rangle) = T(\langle -b_1 + 2b_2, b_1 - b_2 \rangle)$$

$$= \langle (-b_1 + 2b_2) + 2(b_1 - b_2), (-b_1 + 2b_2) + (b_1 - b_2) \rangle$$

$$= \langle b_1, b_2 \rangle.$$

Thus T and T^{-1} are inverses of eachother.

Notice that if we represent T and T^{-1} in the standard ordered basis B we get:

$$[T]_B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \qquad [T^{-1}]_B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

and

$$[T]_{B}[T^{-1}]_{B} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}$$
$$[T^{-1}]_{B}[T]_{B} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}.$$

Theorem: Let V and W be vector spaces and $T: V \rightarrow W$ be linear and invertible. Then T^{-1} is linear.

Proof: Let $w_1, w_2 \in W$ and $c \in \mathbb{R}$.

Since T is one-to-one and onto there exist unique vectors $v_1,v_2\in V$ such

that $T(v_1) = w_1$ and $T(v_2) = w_2$ and thus $T^{-1}(w_1) = v_1$ and $T^{-1}(w_2) = v_2$.

Therefore we have:

$$T^{-1}(cw_1 + w_2) = T^{-1}(cT(v_1) + T(v_2))$$

= $T^{-1}(T(cv_1 + v_2))$
= $cv_1 + v_2$
= $cT^{-1}(w_1) + T^{-1}(w_2)$ and T^{-1} is linear.

Def. Let A be an $n \times n$ matrix. Then A is **invertible** if there exists an $n \times n$ matrix B such that AB = BA = I.

Theorem: Let V and W be finite dimensional vector spaces with ordered bases B_1 and B_2 . Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]_{B_1}^{B_2}$ is invertible. Furthermore $[T^{-1}]_{B_2}^{B_1} = ([T]_{B_1}^{B_2})^{-1}$.

Proof: Suppose *T* is invertible.

Then *T* is one-to-one and onto thus N(T) = 0 and $Rank(T) = \dim(V)$. Let $n = \dim(W)$. $[T]_{B_1}^{B_2}$ is an $n \times n$ matrix. $T^{-1}: W \to V$ satisfies $TT^{-1} = I_W$ and $T^{-1}T = I_V$. Thus we have: $I = [W]_{M=1}^{M=1} [W]_{M=1}^{B_1} [W]_{M=1}^{B_2}$

 $I_n = [I_V]_{B_1} = [T^{-1}T]_{B_1} = [T^{-1}]_{B_2}^{B_1}[T]_{B_2}^{B_2}.$ Similarly, we have $[T]_{B_1}^{B_2}[T^{-1}]_{B_2}^{B_1} = I_n.$ So $[T]_{B_1}^{B_2}$ is invertible and $([T]_{B_1}^{B_2})^{-1} = [T^{-1}]_{B_2}^{B_1}.$

Now suppose that $A = [T]_{B_1}^{B_2}$ is invertible.

Then there is an $n \times n$ matrix C such that AC = CA = I.

There exists a $U \in \mathcal{L}(W, V)$ such that

$$U(w_j) = \sum_{i=1}^n C_{ij} v_i$$
 for $1 \le j \le n$,

where $B_1 = \{v_1, \dots, v_n\}$ and $B_2 = \{w_1, \dots, w_n\}$ are ordered bases for Vand W. Thus $[U]_{B_2}^{B_1} = C$.

To see that $U = T^{-1}$ note that:

 $[UT]_{B_1} = [U]_{B_2}^{B_1} [T]_{B_1}^{B_2} = CA = I_n = [I_V]_{B_1}$, So $UT = I_V$. Similarly, $TU = I_W$. Corollary: Let V be a finite dimensional vector space with ordered basis B and let $T: V \to V$ be linear. Then T is invertible if and only if $[T]_B$ is invertible. Furthermore $[T^{-1}]_B = ([T]_B)^{-1}$.

Def. Let *V* and *W* be vector spaces. We say *V* is isomorphic to *W* if there exists a linear transformation $T: V \rightarrow W$ that is invertible. In this case *T* is called an isomorphism.

Ex. Show that $T: \mathbb{R}^3 \to P_2(\mathbb{R})$ by $T(\langle a_1, a_2, a_3 \rangle) = a_1 + a_2 x + a_3 x^2$ is an isomorphism.

We have already seen that T is linear.

 $\dim(\mathbb{R}^3) = \dim(P_2(\mathbb{R})) = 3$ and $N(T) = \{0\}$ so T is one-to-one and onto.

Thus T is invertible and an isomorphism.

The inverse map is:

$$T^{-1}(a_1 + a_2x + a_3x^2) = \langle a_1, a_2, a_3 \rangle$$
.

A straight forward calculation shows that :

$$T^{-1}T = I_{\mathbb{R}^3}$$
$$TT^{-1} = I_{P_2(\mathbb{R})}.$$

Theorem: Let V and W be finite dimensional vector spaces. Then V is isomorphic to W is and only if $\dim(V) = \dim(W)$.

Proof: Suppose V is isomorphic to W and $T: V \rightarrow W$ is an isomorphism.

Since *T* is one-to-one and onto $\dim(V) = \dim(W)$.

Now let's assume that $\dim(V) = \dim(W)$ and show V is isomorphic to W.

Let $B_1 = \{v_1, ..., v_n\}$, $B_2 = \{w_1, ..., w_n\}$ be ordered bases for V and W respectively.

We can define a linear transformation $T: V \to W$ by $T(v_i) = w_i$, $1 \le i \le n$.

$$R(T) = span\{T(v_1), \dots, T(v_n)\}$$
$$= span\{w_1, \dots, w_n\}$$
$$= W.$$

So T is onto.

Since $\dim(V) = \dim(W)$, *T* must also be one-to-one.

Hence *T* is an isomorphism.

Corollary: Every vector space V with $\dim(V) = n$ is isomorphic to \mathbb{R}^n .

Ex. By the previous corollary, $M_{n \times n}(\mathbb{R})$ is isomorphic to \mathbb{R}^{n^2} since $\dim(M_{n \times n}(\mathbb{R})) = n^2$.

Ex. Find an isomorphism from $S_{2\times 2}(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ b & d \end{bmatrix} \mid a, b, d \in \mathbb{R} \right\}$ to \mathbb{R}^3 .

Let
$$T: S_{2 \times 2}(\mathbb{R}) \to \mathbb{R}^3$$
 by $T\left(\begin{bmatrix} a & b \\ b & d \end{bmatrix} \right) = < a, b, d >$.

We need to show that *T* is linear, one-to-one, and onto.

To show that *T* is linear let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$, $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{bmatrix}$, and $c \in \mathbb{R}$. $T(cA + B) = T(\begin{bmatrix} ca_{11} & ca_{12} \\ ca_{12} & ca_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{bmatrix})$ $= T(\begin{bmatrix} ca_{11} + b_{11} & ca_{12} + b_{12} \\ ca_{12} + b_{12} & ca_{22} + b_{22} \end{bmatrix})$ $= < ca_{11} + b_{11}, ca_{12} + b_{12}, ca_{22} + b_{22} >$ $= c < a_{11}, a_{12}, a_{22} > + < b_{11}, b_{12}, b_{22} >$ = cT(A) + T(B).

So T is linear.

To show that T is one-to-one we show that $N(T) = \{0\}$.

 $T(A) = \langle a_{11}, a_{12}, a_{22} \rangle = \langle 0, 0, 0 \rangle \implies a_{11} = 0, a_{12} = 0, a_{22} = 0.$ Thus $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, and $N(T) = \{0\}.$

To show that *T* is onto, take any element $\langle a, b, d \rangle \in \mathbb{R}^3$ and let's show we can find $A \in S_{2 \times 2}(\mathbb{R})$ such that $T(A) = \langle a, b, d \rangle$.

Let
$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$
, then $T(A) = \langle a, b, d \rangle$, and T is onto.

Thus *T* is an isomorphism of $S_{2\times 2}(\mathbb{R})$ and \mathbb{R}^3 .