Isomorphisms

Def. Let V and W be vector spaces, and let $T: V \to W$ be linear. A function $U: W \to V$ is said to be the **inverse of T** if $TU = I_W$ and $UT = I_V$. If T has an inverse, then T is said to be **invertible**.

If T is invertible then the inverse of T is unique and denoted $T^{-1}.$

Linear transformations are special cases of functions. A function is invertible if and only if it is one-to-one and onto. Thus we have:

Theorem: Let $T: V \to W$ be a linear transformation where $\dim(V) = \dim(W)$ (both finite). Then T is invertible if and only if $Rank(T) = dim(V)$.

We saw earlier that when $\dim(V) = \dim(W)$ (both finite) then $Rank(T) = dim(V)$ is equivalent to T being one-to-one and onto.

The following holds for invertible functions T and U .

1.
$$
(TU)^{-1} = U^{-1}T^{-1}
$$

2. $(T^{-1})^{-1} = T$; thus T^{-1} is invertible.

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(< a_1, a_2>) = < a_1 + 2a_2, a_1 + a_2 >$ using the standard ordered basis for \mathbb{R}^2 . Show that T^{-1} : $\mathbb{R}^2 \to \mathbb{R}^2$ given by $T^{-1}(< b_1, b_2>) = < -b_1 + 2b_2, b_1 - b_2>$ is the inverse of T.

$$
T^{-1}T(< a_1, a_2>) = T^{-1}(< a_1 + 2a_2, a_1 + a_2>)
$$

= $-(a_1 + 2a_2) + 2(a_1 + a_2), (a_1 + 2a_2) - (a_1 + a_2) >$
= $a_1, a_2>$.

$$
TT^{-1}(< b_1, b_2>) = T(< -b_1 + 2b_2, b_1 - b_2>)
$$

= $(-b_1 + 2b_2) + 2(b_1 - b_2), (-b_1 + 2b_2) + (b_1 - b_2) >$
= $b_1, b_2>$.

Thus T and T^{-1} are inverses of eachother.

Notice that if we represent T and T^{-1} in the standard ordered basis B we get:

$$
[T]_B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \qquad [T^{-1}]_B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}
$$

and

$$
[T]_B[T^{-1}]_B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
$$

$$
[T^{-1}]_B[T]_B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2.
$$

Theorem: Let V and W be vector spaces and $T: V \to W$ be linear and invertible. Then T^{-1} is linear.

Proof: Let $w_1, w_2 \in W$ and $c \in \mathbb{R}$.

Since T is one-to-one and onto there exist unique vectors $v_1, v_2 \in V$ such

that $T(v_1) = w_1$ and $T(v_2) = w_2$ and thus $T^{-1}(w_1) = v_1$ and $T^{-1}(w_2) = v_2$.

Therefore we have:

$$
T^{-1}(cw_1 + w_2) = T^{-1}(cT(v_1) + T(v_2))
$$

= $T^{-1}(T(cv_1 + v_2))$
= $cv_1 + v_2$
= $cT^{-1}(w_1) + T^{-1}(w_2)$ and T^{-1} is linear.

Def. Let A be an $n \times n$ matrix. Then A is **invertible** if there exists an $n \times n$ matrix B such that $AB = BA = I$.

Theorem: Let V and W be finite dimensional vector spaces with ordered bases B_1 and B_2 . Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]_{B_1}^{B_2}$ is invertible. Furthermore $\begin{bmatrix} -1 \end{bmatrix}_{B_2}^{B_1} = \left(\begin{bmatrix} T \end{bmatrix}_{B_1}^{B_2} \right)$ −1 .

Proof: Suppose T is invertible.

Then T is one-to-one and onto thus $N(T) = 0$ and $Rank(T) = dim(V)$. Let $n = \dim(W)$. $\left[T\right]_{B_1}^{B_2}$ is an $n\times n$ matrix. $T^{-1}: W \to V$ satisfies $TT^{-1} = I_W$ and $T^{-1}T = I_V$. Thus we have:

 $I_n = [I_V]_{B_1} = [T^{-1}T]_{B_1} = [T^{-1}]_{B_2}^{B_1}[T]_{B_1}^{B_2}.$ Similarly, we have $[T]_{B_1}^{B_2} [T^{-1}]_{B_2}^{B_1} = I_n$. So $[T]_{B_1}^{B_2}$ is invertible and $\left(\left[T\right]_{B_1}^{B_2}\right)^{-1}=\left[T^{-1}\right]_{B_2}^{B_1}$.

Now suppose that $A = [T]_{B_1}^{B_2}$ is invertible.

Then there is an $n \times n$ matrix C such that $AC = CA = I$.

There exists a $U \in \mathcal{L}(W, V)$ such that

$$
U(w_j) = \sum_{i=1}^n C_{ij} v_i \quad \text{ for } 1 \le j \le n,
$$

where $B_1 = \{v_1, ..., v_n\}$ and $B_2 = \{w_1, ..., w_n\}$ are ordered bases for V and $W.$ Thus $\left[U\right]^{B_1}_{B_2} = C.$

To see that $U = T^{-1}$ note that:

$$
[UT]_{B_1} = [U]_{B_2}^{B_1}[T]_{B_1}^{B_2} = CA = I_n = [I_V]_{B_1},
$$

So $UT = I_V$. Similarly, $TU = I_W$.

Corollary: Let V be a finite dimensional vector space with ordered basis B and let $T: V \to V$ be linear. Then T is invertible if and only if $[T]_B$ is invertible. Furthermore $[T^{-1}]_B = ([T]_B)^{-1}$.

Def. Let V and W be vector spaces. We say V is isomorphic to W if there exists a linear transformation $T: V \to W$ that is invertible. In this case T is called an **isomorphism**.

Ex. Show that $T: \mathbb{R}^3 \to P_2(\mathbb{R})$ by $T(< a_1, a_2, a_3>) = a_1 + a_2 x + a_3 x^2$ is an isomorphism.

We have already seen that T is linear.

 $\dim(\mathbb{R}^3) = \dim\bigl(P_2(\mathbb{R})\bigr) = 3$ and $N(T) = \{0\}$ so T is one-to-one and onto.

Thus T is invertible and an isomorphism.

The inverse map is:

$$
T^{-1}(a_1 + a_2x + a_3x^2) = \langle a_1, a_2, a_3 \rangle.
$$

A straight forward calculation shows that :

$$
T^{-1}T = I_{\mathbb{R}^3}
$$

$$
TT^{-1} = I_{P_2(\mathbb{R})}.
$$

Theorem: Let V and W be finite dimensional vector spaces. Then V is isomorphic to W is and only if $\dim(V) = \dim(W)$.

Proof: Suppose V is isomorphic to W and $T: V \to W$ is an isomorphism.

Since T is one-to-one and onto $\dim(V) = \dim(W)$.

Now let's assume that $\dim(V) = \dim(W)$ and show V is isomorphic to W.

Let $B_1 = \{v_1, ..., v_n\}$, $B_2 = \{w_1, ..., w_n\}$ be ordered bases for V and W respectively.

We can define a linear transformation $T: V \to W$ by $T(v_i) = w_i$, $1 \leq i \leq n$.

$$
R(T) = span{T(v_1), ..., T(v_n)}
$$

= span{w₁, ..., w_n}
= W.

So T is onto.

Since dim(V) = dim(W), T must also be one-to-one.

Hence T is an isomorphism.

Corollary: Every vector space V with $\dim(V) = n$ is isomorphic to \mathbb{R}^n .

Ex. By the previous corollary, $M_{n\times n}(\mathbb{R})$ is isomorphic to \mathbb{R}^{n^2} since $\dim(M_{n\times n}(\mathbb{R}))=n^2.$

Ex. Find an isomorphism from $S_{2\times 2}(\mathbb{R})=\left\{\begin{bmatrix}a&b\ b&d\end{bmatrix}\right\}$ b d $| \, | \, a, b, d \in \mathbb{R} \}$ to \mathbb{R}^3 .

Let
$$
T: S_{2\times 2}(\mathbb{R}) \to \mathbb{R}^3
$$
 by $T\begin{pmatrix} \begin{bmatrix} a & b \ b & d \end{bmatrix} \end{pmatrix} =$.

We need to show that T is linear, one-to-one, and onto.

To show that T is linear let $A = |$ a_{11} a_{12} $\begin{bmatrix} a_{11} & a_{12} \ a_{12} & a_{22} \end{bmatrix}$, $B = \begin{bmatrix} b_{11} & b_{12} \ b_{12} & b_{22} \end{bmatrix}$ b_{12} b_{22} \vert , and $c \in \mathbb{R}$. $T(cA + B) = T(|$ ca_{11} ca_{12} $\begin{bmatrix} ca_{11} & ca_{12} \ ca_{12} & ca_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \ b_{12} & b_{22} \end{bmatrix}$ b_{12} b_{22} \vert $= T\begin{pmatrix} ca_{11} + b_{11} & ca_{12} + b_{12} \\ ca_{11} + b_{12} & ca_{12} + b_{12} \end{pmatrix}$ $ca_{12} + b_{12}$ $ca_{22} + b_{22}$ \vert $= $ca_{11} + b_{11}, ca_{12} + b_{12}, ca_{22} + b_{22} >$$ $= c < a_{11}, a_{12}, a_{22} > + < b_{11}, b_{12}, b_{22} >$ $= cT(A) + T(B).$

So T is linear.

To show that T is one-to-one we show that $N(T) = \{0\}$.

 $T(A) = \langle a_{11}, a_{12}, a_{22} \rangle = \langle 0, 0, 0 \rangle \Rightarrow a_{11} = 0, a_{12} = 0, a_{22} = 0.$ Thus $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 0 0 |, and $N(T) = \{0\}$.

To show that T is onto, take any element $\lt a$, b , $d \gt \in \mathbb{R}^3$ and let's show we can find $A \in S_{2\times 2}(\mathbb{R})$ such that $T(A) = < a, b, d >$.

Let
$$
A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}
$$
, then $T(A) = $a, b, d >$, and T is onto.$

Thus T is an isomorphism of $S_{2\times 2}(\mathbb{R})$ and $\mathbb{R}^3.$