Composition of Linear Transformations

Theorem: Let V, W, and Z be vector spaces and let $T: V \to W$ and $U: W \to Z$ be linear then $U \circ T = UT: V \to Z$ is linear.

Proof: Let $u, v \in V$ and $c \in \mathbb{R}$ then

$$UT(cu + v) = U(T(cu + v))$$

= $U(cT(u) + T(v))$
= $U(cT(u)) + U(T(v))$
= $cU(T(u)) + U(T(v))$
= $cUT(u) + UT(v).$

Thus UT is linear.

Theorem: Let *V* be a vector space. Let $T, U_1, U_2 \in \mathcal{L}(V)$ then a. $T(U_1 + U_2) = TU_1 + TU_2$ and $(U_1 + U_2)T = U_1T + U_2T$ b. $T(U_1U_2) = (TU_1)U_2$ c. TI = IT = T. d. $c(U_1U_2) = (cU_1)U_2 = U_1(cU_2)$ for any $c \in \mathbb{R}$.

Proof of a.: Let $v \in V$ then

$$(T(U_1 + U_2))(v) = T(U_1(v) + U_2(v))$$

= $TU_1(v) + TU_2(v)$
= $(TU_1 + TU_2)(v).$

Similarly for $(U_1 + U_2)T = U_1T + U_2T$.

Let $T: V \to W$ and $U: W \to Z$ be linear transformations of vector spaces. The key fact is that if we have matrix representations of T and U as A and C respectively, then the matrix representation of the composition UT is CA. That is the matrix product of C and A.

We can see this by letting $B_1 = \{v_1, ..., v_n\}$, $B_2 = \{w_1, ..., w_m\}$, and $B_3 = \{z_1, ..., z_p\}$ be ordered bases for V, W, and Z respectively. Thus for any basis vector $v_i \in V$ we have:

$$UT(v_j) = U(T(v_j)) = U(\sum_{k=1}^m A_{kj} w_k)$$

= $\sum_{k=1}^m A_{kj} U(w_k)$
= $\sum_{k=1}^m A_{kj} (\sum_{i=1}^p C_{ik} z_i)$
= $\sum_{i=1}^p (\sum_{k=1}^m C_{ik} A_{kj}) z_i$
= $\sum_{i=1}^p D_{ij} z_i$

where $D_{ij} = \sum_{k=1}^{m} C_{ik} A_{kj}$.

Def. Let *C* be an $m \times n$ matrix and *A* an $n \times p$ matrix. We define the **product of** *C* and *A* to be

$$(CA)_{ij} = \sum_{k=1}^{m} C_{ik} A_{kj} \quad \text{for } 1 \le i \le m, \ 1 \le j \le p.$$

Thus if the matrix representation of $T: V \to W$ is A and the matrix representation of $U: W \to Z$ is C then the matrix representation of $UT: V \to Z$ is CA.

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $U: \mathbb{R}^3 \to \mathbb{R}^2$ be linear transformations defined by

$$T(\langle a_1, a_2 \rangle) = \langle 2a_1 - a_2, a_2, a_2 - 3a_1 \rangle$$
$$U(\langle b_1, b_2, b_3 \rangle) = \langle b_1 + b_2 + 2b_3, b_2 - 3b_3 \rangle$$

with respect to the standard ordered bases B_1 for \mathbb{R}^2 and B_2 for \mathbb{R}^3 . Find a matrix representation of UT with respect to these bases.

We saw in an earlier example that

$$[T]_{B_1}^{B_2} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ -3 & 1 \end{bmatrix}.$$

To find the matrix representation of U notice that

U(<1,0,0>) = <1,0> U(<0,1,0>) = <1,1> U(<0,0,1>) = <2,-3>,Thus $[U]_{B_{2}}^{B_{1}} = \begin{bmatrix}1 & 1 & 2\\ 0 & 1 & -3\end{bmatrix}.$ So we have: $[UT]_{B_{1}}^{B_{1}} = \begin{bmatrix}1 & 1 & 2\\ 0 & 1 & -3\end{bmatrix} \begin{bmatrix}2 & -1\\ 0 & 1\\ -3 & 1\end{bmatrix}$ $= \begin{bmatrix}-4 & 2\\ 9 & -2\end{bmatrix}.$

Notice that we can also calculate this by directly finding a matrix representation of $U \circ T$ from the formulas for $T(\langle a_1, a_2 \rangle)$ and $U(\langle b_1, b_2, b_3 \rangle)$.

$$U \circ T(\langle a_1, a_2 \rangle) = U(T(\langle a_1, a_2 \rangle))$$

= $U(\langle 2a_1 - a_2, a_2, a_2 - 3a_1 \rangle)$
= $\langle 2a_1 - a_2 + a_2 + 2(a_2 - 3a_1), a_2 - 3(a_2 - 3a_1) \rangle$
= $\langle -4a_1 + 2a_2, 9a_1 - 2a_2 \rangle.$

Thus we have:

$$U \circ T(<1,0>) = <-4,9> \qquad [U \circ T]_{B_1}^{B_1} = \begin{bmatrix} -4 & 2\\ 9 & -2 \end{bmatrix}.$$
$$U \circ T(<0,1>) = <2, -2>$$

Ex. Let $U: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ and $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ be linear transformations defined by U(p(x)) = p'(x) and $T(q(x)) = \int_0^x q(t)dt$. Let B_1 and B_2 be the standard bases for $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$ respectively. Find the matrix representation of $UT: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ and $TU: P_3(\mathbb{R}) \to P_3(\mathbb{R})$.

Let's first find the matrix representations of T and U.

$$B_1 = \{1, x, x^2, x^3\}, \quad B_2 = \{1, x, x^2\}.$$

$$T: P_{2}(\mathbb{R}) \to P_{3}(\mathbb{R}) \text{ by } T(q(x)) = \int_{0}^{x} q(t)dt,$$

$$T(1) = \int_{0}^{x} 1dt = x = 0(1) + 1(x) + 0(x^{2}) + 0(x^{3})$$

$$T(x) = \int_{0}^{x} tdt = \frac{1}{2}(x^{2}) = 0(1) + 0(x) + \frac{1}{2}(x^{2}) + 0(x^{3})$$

$$T(x^{2}) = \int_{0}^{x} t^{2}dt = \left(\frac{1}{3}\right)x^{3} = 0(1) + 0(x) + 0(x^{2}) + \frac{1}{3}(x^{3})$$

$$\implies [T]_{B_{2}}^{B_{1}} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}.$$

$$\begin{split} U: P_3(\mathbb{R}) &\to P_2(\mathbb{R}) \text{ by } U(p(x)) = p'(x), \quad B_1 = \{1, x, x^2, x^3\}.\\ U(1) &= 0 = 0(1) + 0(x) + 0(x^2)\\ U(x) &= 1 = 1(1) + 0(x) + 0(x^2)\\ U(x^2) &= 2x = 0(1) + 2(x) + 0(x^2)\\ U(x^3) &= 3x^2 = 0(1) + 0(x) + 3(x^2)\\ &\implies \qquad \left[U\right]_{B_1}^{B_2} = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 3 \end{bmatrix}. \end{split}$$

$$\begin{bmatrix} UT \end{bmatrix}_{B_2}^{B_2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
$$\begin{bmatrix} TU \end{bmatrix}_{B_1}^{B_1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Def. The Kronecker delta, δ_{ij} , is defined by

$$\begin{split} \delta_{ij} &= 1 & \text{ if } i = j \\ &= 0 & \text{ if } i \neq j. \end{split}$$

The $n \times n$ identity matrix I_n is defined by

$$(I_n)_{ij} = \delta_{ij}.$$

For example:

$$I_1 = [1], \qquad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ etc.}$$

Theorem: Let A be an $m \times n$ matrix, B and C be $n \times p$ matrices and D and E $q \times m$ matrices. Then

- a. A(B + C) = AB + AC and (D + E)A = DA + EA.
- b. $c(AB) = (cA)B = A(cB), \quad c \in \mathbb{R}.$

c.
$$I_m(A) = A = A(I_n)$$

d. if V is an n-dimensional vector space with ordered basis β , then $[I_V]_{\beta} = I_n$.

All of these results follow from straight forward matrix calculations.

Corollary: Let A be an $m \times n$ matrix, $B_1, ..., B_k$ $n \times p$ matrices, $C_1, ..., C_k$ $q \times m$ matrices and $a_1, ..., a_k \in \mathbb{R}$, then

$$A(\sum_{i=1}^{k} a_i B_i) = \sum_{i=1}^{k} a_i A B_i \quad \text{and}$$
$$(\sum_{i=1}^{k} a_i C_i) A = \sum_{i=1}^{k} a_i C_i A.$$

Def. For an $n \times n$ matrix A we define

$$A^{1} = A$$
$$A^{2} = A(A)$$
$$A^{3} = A^{2}(A)$$
$$\vdots$$
$$A^{k} = A^{k-1}(A).$$

Notice that unlike real numbers, if A is a matrix and $A^2 = 0$ (ie the zero matrix) It does not imply that A = 0. For example if $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ then

$$A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Theorem: Let *V* and *W* be finite dimensional vector spaces with ordered bases B_1 and B_2 respectively and let $T: V \to W$ be linear. Then for $u \in V$, we have

$$[T(u)]_{B_2} = [T]_{B_1}^{B_2} [u]_{B_1}.$$

Proof: Fix $u \in V$ and let $U: \mathbb{R} \to V$ by U(c) = cu.

Notice that U(1) = u.

So the matrix representation of U is $\begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$ where $u = \lambda_1 v_1 + \dots + \lambda_n v_n$. Now TU(1) = T(u) and $[T(u)]_{B_2} = [T]_{B_1}^{B_2} [u]_{B_1}$.

In other words, if we have a matrix representation of a linear transformation T of V into W, then to calculate T(u) for $u \in V$, we multiply the matrix representation of T with the column vector $u = \lambda_1 v_1 + \cdots + \lambda_n v_n$.

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given $T(\langle a_1, a_2 \rangle) = \langle 2a_1 - a_2, a_2, a_2, a_2 - 3a_1 \rangle$ with respect to the standard ordered bases B_1 for \mathbb{R}^2 and B_2 for \mathbb{R}^3 . Find T(u) where $u = \langle 5, 2 \rangle$ by matrix multiplication.

We saw in an earlier example that the matrix representation of T is given by

$$[T]_{B_1}^{B_2} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ -3 & 1 \end{bmatrix}$$

 $[u]_{B_1} = \begin{bmatrix} 5\\2 \end{bmatrix}$, so we have:

$$[T(u)]_{B_2} = [T]_{B_1}^{B_2} [u]_{B_1} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ -13 \end{bmatrix}.$$

Ex. Let $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ by T(p(x)) = p'(x). Find $T(3 + 3x - x^2 + 2x^3)$ through matrix multiplication (assume the standard ordered bases).

From an earlier example we know that

$$[T]_{B_1}^{B_2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

$$[3 + 3x - x^2 + 2x^3]_{B_1} = \begin{bmatrix} 3 \\ 3 \\ -1 \\ 2 \end{bmatrix}, \text{ so we have:}$$

$$[T(3 + 3x - x^2 + 2x^3)]_{B_2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix}.$$

So
$$T(3 + 3x - x^2 + 2x^3) = 3(1) - 2(x) + 6(x^2) = 3 - 2x + 6x^2$$
.