The Matrix Representation of a Linear Transformation

Def. Let V be a finite dimensional vector space. An **ordered basis for** V is a basis for V with a specific order.

Ex. In \mathbb{R}^3 let $B = \{e_1, e_2, e_3\}$ where $e_1 = 1, 0, 0 > 0, e_2 = 0, 1, 0 > 0$ $e_3 = 0.01$.

B is called the standard ordered basis for \mathbb{R}^3 .

 $C = \{e_2, e_1, e_3\}$ is a different ordered basis for \mathbb{R}^3 .

Even though B and C contain the same basis vectors, they appear in different orders in each set.

As we will see shortly, when we express vectors in terms of a basis, the order of the basis matters.

Just as $e_1, e_2, ..., e_n$ is the standard ordered basis for \mathbb{R}^n , $\,\{1, x, x^2, ..., x^n\}$ is the standard ordered basis for $P_n(\mathbb{R})$.

Def. Let $B = \{v_1, v_2, ..., v_n\}$ be an ordered basis for a finite dimensional vector space $V. \,$ For $v \in V$, let $a_1, ..., a_n$ be the unique real numbers such that

$$
v = a_1 v_1 + \dots + a_n v_n.
$$

we define the **coordinate vector of** v relative to B by

$$
[v]_B = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}.
$$

Ex. $B = \{v_1, v_2, v_3\} = \{e_1, e_2, e_3\}$ and $B' = \{w_1, w_2, w_3\} = \{e_2, e_1, e_3\}$ are ordered bases for \mathbb{R}^3 . The vector $v = < 5, -3, 2 >$ is given by:

$$
\langle 5, -3, 2 \rangle = 5e_1 - 3e_2 + 2e_3
$$

$$
= 5v_1 - 3v_2 + 2v_3.
$$

Thus we have:
$$
[v]_B = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}
$$
.

On the other hand:

$$
\langle 5, -3, 2 \rangle = 5e_1 - 3e_2 + 2e_3
$$

$$
= -3w_1 + 5w_2 + 2w_3.
$$

Which gives us:
$$
[v]_{B'} = \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}
$$
.

Ex. Let $V = P_2(\mathbb{R})$ and $B = \{v_1, v_2, v_3\} = \{1, x, x^2\}$, $B' = \{w_1, w_2, w_3\} = \{x^2, x, 1\}$ ordered bases for V . Then

$$
f(x) = 3 - 4x + 5x^2
$$
 is represented by:

$$
f(x) = 3 - 4x + 5x^{2} = 3v_{1} - 4v_{2} + 5v_{3} \implies [f]_{B} = \begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix}.
$$

$$
f(x) = 3 - 4x + 5x^{2} = 5w_{1} - 4w_{2} + 3w_{3} \implies [f]_{B'} = \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}.
$$

Let V and W be finite dimensional vector spaces with ordered bases

 $B = \{v_1, ..., v_n\}$ and $C = \{w_1, ..., w_m\}$ respectively.

Let $T: V \rightarrow W$ be linear.

Then for each j, $1 \le j \le n$ there exists a unique set of real numbers $a_{ij} \in \mathbb{R}$, $1 \leq i \leq m$ such that

$$
T(v_j) = a_{1j}w_1 + a_{2j}w_2 + \dots + a_{mj}w_m; \quad 1 \le j \le n.
$$

Def. We call the $m \times n$ matrix A defined by

$$
A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}
$$

the matrix representation of T in the ordered bases B and C and write

$$
A=[T]_B^C.
$$

If
$$
V = W
$$
 and $B = C$ we write $A = [T]_B$.

Notice that the j^{th} column of A is simply $\bigl[T\bigl(\mathit{v}_{j}\bigr)\bigr]_{\mathcal{C}}$:

$$
A = [T]_B^C = [T(v_1) \quad T(v_2) \cdots \quad T(v_n)].
$$

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$
T() = .
$$

Find the matrix represenation of T with repsect to the standard ordered basis For \mathbb{R}^2 and \mathbb{R}^3 .

So if
$$
V = \mathbb{R}^2
$$
 and $W = \mathbb{R}^3$
\n $v_1 = < 1.0 >$ $w_1 = < 1.0.0 >$
\n $v_2 = < 0.1 >$ $w_2 = < 0.1.0 >$
\n $w_3 = < 0.0.1 >$

Thus $B = \{v_1, v_2\}$ and $C = \{w_1, w_2, w_3\}.$

$$
T(v_1) = T(<1,0>) = <1,0,3> = w_1 + 0w_2 + 3w_3
$$

$$
T(v_2) = T(<0,1>) = <-2,0,2> = -2w_1 + 0w_2 + 2w_3.
$$

Hence we have:

$$
[T]_B^C = [T(v_1) \quad T(v_2)] = \begin{bmatrix} 1 & -2 \\ 0 & 0 \\ 3 & 2 \end{bmatrix}.
$$

If we change the order of the basis in $V = \mathbb{R}^2$ to $\{v_2, v_1\}$ and call this new ordered basis B' , then the matrix representation of T becomes:

$$
[T]_{B'}^{C} = [T(v_2) \quad T(v_1)] = \begin{bmatrix} -2 & 1 \\ 0 & 0 \\ 2 & 3 \end{bmatrix}.
$$

If we let *B* be the basis for
$$
V = \mathbb{R}^2
$$
 and let
\n $C' = \{u_1, u_2, u_3\} = \{<0, 0, 1>, <0, 1, 0>, <1, 0, 0>\}$ then

$$
T(v_1) = T(<1,0>) = <1,0,3> = 3u_1 + 0u_2 + u_3
$$

$$
T(v_2) = T(<0,1>) = <-2,0,2> = 2u_1 + 0u_2 - 2u_3.
$$

So we get:

$$
[T]_B^{C'} = [T(v_1) \quad T(v_2)] = \begin{bmatrix} 3 & 2 \\ 0 & 0 \\ 1 & -2 \end{bmatrix}.
$$

Ex. Let $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by $T\bigl(p(x)\bigr) = p'(x) + p(0).$ Let B and C be the standard ordered bases for $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$ respectively. Find the matrix representation of T.

The standard ordered basis for $P_3(\mathbb{R})$ is:

$$
v_1 = 1
$$
, $v_2 = x$, $v_3 = x^2$, $v_4 = x^3$.

The standard ordered basis for $P_2(\mathbb{R})$ is:

$$
w_1 = 1, \quad w_2 = x, \quad w_3 = x^2.
$$

$$
T(v_1) = T(1) = 1 = 1(1) + 0(x) + 0(x^2)
$$

\n
$$
T(v_2) = T(x) = 1 = 1(1) + 0(x) + 0(x^2)
$$

\n
$$
T(v_3) = T(x^2) = 2x = 0(1) + 2(x) + 0(x^2)
$$

\n
$$
T(v_4) = T(x^3) = 3x^2 = 0(1) + 0(x) + 3(x^2).
$$

Thus we have:

$$
[T]_B^C = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

- Ex. Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^2$, each with the standard ordered basis B (so $C = B$). $T: V \to W$ by $T($a_1, a_2>) = < 4a_1 + 6a_2, -4a_1 + 2a_2>$.$ a. Find the matrix representation of T . b. Suppose V has the standard ordered basis but W has the ordered basis
- $C' = \{w_1, w_2\} = \{<1, 1>, <3, -1>\}$. Find the matrix representation of T.
	- a. Since V and W both have the standard ordered basis we have:

$$
v_1 = 1,0 > \qquad w_1 = 1,0 >
$$

$$
v_2 = 0,1 > \qquad w_2 = 0,1>.
$$

$$
T(v_1) = T(<1,0>) = <4, -4>;\quad T(v_2) = T(<0,1>) = <6, 2>.
$$

$$
[T]_B = \begin{bmatrix} 4 & 6\\ -4 & 2 \end{bmatrix}.
$$

b. $T(< 1, 0>) = < 4, -4 >$ and $T(< 0, 1>) = < 6, 2 >$ with respect to the standard ordered basis for both V and W . That is

$$
\langle 4, -4 \rangle = 4e_1 - 4e_2 = 4 \langle 1, 0 \rangle - 4 \langle 0, 1 \rangle
$$

$$
\langle 6, 2 \rangle = 6e_1 + 2e_2 = 6 \langle 1, 0 \rangle + 2 \langle 0, 1 \rangle.
$$

Now we need to express $< 4, -4 >$ and $< 6.2 >$ in terms of the new basis vectors $C' = \{w'_1, w'_2\} = \{<1, 1>, <3, -1>\}.$

 $T(v_1) = < 4, -4> = a_1w_1' + a_2w_2' = a_1 < 1, 1> +a_2 < 3, -1>$ so we need to solve $4 = a_1 + 3a_2$

 $-4 = a_1 - a_2.$

Solving these simultaneous equations we get: $a_1 = -2$, $a_2 = 2$. That is, we have:

 $T(v_1) = 4, -4 > = -2 < 1, 1 > +2 < 3, -1 > = -2w'_1 + 2w'_2$.

Similarly,

 $T(v_2) = 6, 2 > = a_1 w_1' + a_2 w_2' = a_1 < 1, 1 > +a_2 < 3, -1 >$ so we need to solve: $6 = a_1 + 3a_2$

$$
2=a_1-a_2.
$$

Solving these simultaneous equations we get: $a_1 = 3$, $a_2 = 1$.

That is, we have:

$$
T(v_2) = <6, 2> = 3 <1, 1> +1 <3, -1> = 3w'_1 + w_2'.
$$

So with respect to the ordered bases $B = \{v_1, v_2\} = \{<1, 0>, 0, 1>\}$ for V and $C' = \{w'_1, w_2'\} = \{<1, 1>, <3, -1>\}$ for W we have:

$$
T(v_1) = <4, -4>= -2 <1, 1> +2 <3, -1>= -2w'_1 + 2w_2'.
$$

$$
T(v_2) = <6, 2>= 3 <1, 1> +1 <3, -1>= 3w'_1 + w_2'.
$$

Thus T has the matrix representation:

$$
[T]_B^{C'} = \begin{bmatrix} -2 & 3 \\ 2 & 1 \end{bmatrix}.
$$

- Ex. Again let $V = \mathbb{R}^2$ and $W = \mathbb{R}^2$ and $T: V \to W$ by $T($a_1, a_2>$) = < $4a_1 + 6a_2, -4a_1 + 2a_2>$.$
- a. Find the matrix representation of T if V has the ordered basis $B' = \{v_1', v_2'\} = \{< 2, 1>, < -1, 2> \}$ and W has the standard ordered basis B.
- b. Find the matrix representation of T if V has the ordered basis $B' = \{v_1', v_2'\} = \{< 2, 1>, -1, 2> \}$ and W has the ordered basis $C' = \{w'_1, w'_2\} = \{<1, 1>, <3, -1>\}.$
- a. So the ordered bases for V and W are given by:

 $T(v_1') = T(< 2, 1>) = < 8 + 6, -8 + 2 > = < 14, -6 > = 14w_1 - 6w_2$ $T(v_2') = T(<-1, 2>) = <-4 + 12, 4 + 4 > = <8, 8> = 8w_1 + 8w_2.$

So the matrix representation of T is

$$
[T]_{B'}^C = \begin{bmatrix} 14 & 8 \\ -6 & 8 \end{bmatrix}.
$$

b. With respect to the **standard** ordered basis for W we have:

$$
T(v_1') = T(<2,1>) = <14, -6>
$$

$$
T(v_2') = T(<-1,2>) = <8,8>.
$$

So we have to express $< 14, -6 >$ and $< 8, 8 >$ with respect to the new ordered basis for W given by $C' = \{w'_1, w'_2\} = \{<1, 1>, <3, -1>\}.$

 $< 14, -6 > = a w'_1 + b w'_2 = a < 1, 1 > +b < 3, -1 > =$

$$
14 = a + 3b
$$

\n
$$
-6 = a - b
$$

\n
$$
20 = 4b \implies b = 5, a = -1.
$$
 So we have:

$$
T(v_1') = 14, -6 > = -1, 1 > +5 < 3, -1 > = -w_1' + 5w_2'.
$$

$$
\langle 8, 8 \rangle = a w_1' + b w_2' = a \langle 1, 1 \rangle + b \langle 3, -1 \rangle = \langle a + 3b, a - b \rangle
$$

8 = a + 3b
8 = a - b
0 = 4b \implies b = 0, a = 8. So we have:

$$
T(v_2') = 8, \ 8 > = 8 < 1, 1 > = 8w'_1 + 0w'_2.
$$

Thus the matrix representation of T is:

$$
[T]_{B'}^{C'} = \begin{bmatrix} -1 & 8 \\ 5 & 0 \end{bmatrix}.
$$

Ex. Define a linear transformation $T\!:\!M_{2\times 2}(\mathbb R)\rightarrow P_2(\mathbb R)$ with respect to the standard ordered basis $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ 0 0 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ 0 0], $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ 1 0 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ for $M_{2\times2}(\mathbb{R})$ and $C = \{1, x, x^2\}$ for $P_2(\mathbb{R})$ by $T\left(\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right)$ $c \, d$ $\bigg| \bigg) = (a + d) + (2c - b)x + (a + 2d)x^2.$ Find $\bigl[T\bigl]_B^C$.

$$
v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
w_1 = 1, \quad w_2 = x, \quad w_3 = x^2.
$$

$$
T(v_1) = T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1 + x^2 = w_1 + w_3; \qquad T(v_1) = <1, 0, 1>_c
$$

\n
$$
T(v_2) = T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = -x = -w_2; \qquad T(v_2) = <0, -1, 0>_c
$$

\n
$$
T(v_3) = T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 2x = 2w_2; \qquad T(v_3) = <0, 2, 0>_c
$$

\n
$$
T(v_4) = T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 1 + 2x^2 = w_1 + 2w_3; \qquad T(v_4) = <1, 0, 2>_c
$$

$$
[T]_B^C = [T(v_1) \quad T(v_2) \quad T(v_3) \quad T(v_4)]
$$

=
$$
\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}.
$$

Def. Let T, $U: V \to W$ be arbitrary functions, where V and W are vector spaces. Define $(T + U): V \to W$ by $(T + U)(v) = T(v) + U(v)$ for all $v \in V$ and

$$
(\alpha T): V \to W \text{ by } (\alpha T)(v) = \alpha T(v) \text{ for all } v \in V.
$$

Theorem: Let V and W be vector spaces and $T, U: V \rightarrow W$ be linear.

- a. For all $\alpha \in \mathbb{R}$, $\alpha T + U$ is linear.
- b. The collection of all linear transformations from V to W is a vector space.

Proof: a. Let $u, v \in V$ and $c \in \mathbb{R}$. Then

$$
(\alpha T + U)(cu + v) = \alpha T (cu + v) + U(cu + v)
$$

$$
= \alpha [cT(u) + T(v)] + cU(u) + U(v)
$$

$$
= c[\alpha T(u) + U(u)] + \alpha T(v) + U(v)
$$

$$
= c(\alpha T + U)(u) + (\alpha T + U)(v).
$$

So $\alpha T + U$ is linear.

b. Notice that $T_0(v) = 0$ is the zero vector in the collection of linear transformations from V to W .

By part a, this collection is closed under addition and scalar multiplication.

It's straight forward to verify that the vector space axioms hold.

Def. Let V and W be vector spaces. We denote the vector space of all linear transformations from V to W by $\mathcal{L}(V,W)$. If $W = V$ then we write $\mathcal{L}(V)$.

Theorem: Let V and W be finite dimensional vector spaces with orderd bases B and C . Let $T, U: V \rightarrow W$ be a linear transformation. Then

a. $[T + U]_B^C = [T]_B^C + [U]_B^C$ b. $[\alpha T]_B^C = \alpha [T]_B^C$ for all $\alpha \in \mathbb{R}$.

Proof: a. Let $B = \{v_1, ..., v_n\}$ and $C = \{w_1, ..., w_m\}$ be ordered bases for V and W repsectively. For $1 \le j \le n$:

$$
T(v_j) = a_{1j}w_1 + a_{2j}w_2 + \dots + a_{mj}w_m
$$

$$
U(v_j) = b_{1j}w_1 + b_{2j}w_2 + \dots + b_{mj}w_m.
$$

Hence:

$$
(T+U)(v_j) = (a_{1j} + b_{1j})w_1 + (a_{2j} + b_{2j})w_2 + \dots + (a_{mj} + b_{mj})w_m
$$

and
$$
([T+U]_B^C)_{ij} = a_{ij} + b_{ij} = ([T]_B^C)_{ij} + ([U]_B^C)_{ij}.
$$

b. follows in similar fashion.

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $U: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformations defined by

$$
T() = <2a_1 - a_2, a_2, a_2 - 3a_1> \text{ and}
$$

$$
U() = .
$$

Let B and C be the standard ordered bases for \mathbb{R}^2 and \mathbb{R}^3 respectively. Then

$$
T(v_1) = T(<1,0>) = <2,0,-3>; \qquad U(v_1) = U(<1,0>) = <1,0,3> T(v_2) = T(<0,1>) = <-1,1,1>; \qquad U(v_2) = U(<0,1>) = <1,2,-2>
$$

$$
[T]_B^C = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ -3 & 1 \end{bmatrix} \qquad [U]_B^C = \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 3 & -2 \end{bmatrix}.
$$

Notice that $(T + U)$ $($a_1, a_2>$) = $<$ 3 $a_1, 3a_2, -a_2>$$ \Rightarrow $[T + U]_B^C =$ 3 0 0 3 $0 -1$ $=$ \vert $2 -1$ 0 1 −3 1 $|+|$ 1 1 0 2 $3 -2$ $\Big[= [T]_B^C + [U]_B^C.$