The Matrix Representation of a Linear Transformation- HW Problems

In Problems 1-5, using the standard basis for \mathbb{R}^n , $n \ge 1$, find a matrix representation for the following linear transformations.

1.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T(x_1, x_2) = (x_1 - x_2, 2x_1 + x_2)$
2. $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(x_1, x_2) = (x_1 - 2x_2, (3x_1 + x_2), x_2)$
3. $T: \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x_1, x_2, x_3) = (x_1 - 2x_2 + x_3, x_2 + x_3)$
4. $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (2x_1 - x_3, (-x_1 + 2x_2 + x_3), x_1)$
5. $T: \mathbb{R}^3 \to \mathbb{R}$ by $T(x_1, x_2, x_3) = x_1 - 2x_2 + 3x_3$

6. Let
$$\{e_1, e_2\}$$
 be the standard basis for \mathbb{R}^2 and $w_1 = <1, 2, 0>$,

 $w_2 = <1, 0, 2>, \quad w_3 = <0, 1, 2>$ be vectors in \mathbb{R}^3 (written with respect to the standard basis for \mathbb{R}^3). Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(x_1, x_2) = x_1w_1 + (x_1 - x_2)w_2 + (x_1 + x_2)w_3$.

a. Find a matrix representation of T with respect to the ordered bases $\{e_1, e_2\}$ and $\{w_1, w_2, w_3\}$.

b. Find a matrix representation of T with respect to the standard basis for \mathbb{R}^2 and \mathbb{R}^3 .

c. Find a matrix representation of T with respect to the basis $\{<1,1>, <2,3>\}$ for \mathbb{R}^2 and $\{w_1, w_2, w_3\}$ for \mathbb{R}^3 .

7. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ by

 $T(x_1, x_2, x_3) = (x_1 + x_2 + 2x_3, 2x_1 - x_2 - x_3)$ with respect to the standard bases for \mathbb{R}^3 and \mathbb{R}^2 .

a. Find a matrix representation of *T* with respect to the standard bases.

b. Let $w_1 = <1, -1 >$ and $w_2 = <1, 5 >$ be an ordered basis for \mathbb{R}^2 . Find a matrix representation of T with respect to the basis $\{w_1, w_2\}$ for \mathbb{R}^2 and the standard basis for \mathbb{R}^3 .

c. Let $v_1 = <1, 0, 1 >$, $v_2 = <0, 1, 1 >$, $v_3 = <1, 1, 0 >$ be an ordered basis for \mathbb{R}^3 . Find a matrix representation of T with respect to the basis $\{v_1, v_2, v_3\}$ for \mathbb{R}^3 and the standard basis for \mathbb{R}^2 .

d. Find a matrix representation of T with respect to the basis $\{v_1, v_2, v_3\}$ for \mathbb{R}^3 (in part c) and the basis $\{w_1, w_2\}$ for \mathbb{R}^2 (in part b).

8. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ by T(p(x)) = p'(x) + p(x) where $p(x) = a_0 + a_1x + a_2x^2$ Find a matrix representation of T with respect to the standard basis for $P_2(\mathbb{R})$.

9. Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ by $T(A) = (-A)^t$. Find a matrix representation for T with respect to the standard basis for $M_{2\times 2}(\mathbb{R})$, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ }.

10. Let $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ by $T(p(x)) = (\int_0^1 p(x) dx, p'(1))$. Find a matrix representation of T with respect to the standard bases for $P_2(\mathbb{R})$ and \mathbb{R}^2 .