Linear Transformations- HW Problems

In problems 1-4 determine which mappings are linear transformations.

1.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T(x_1, x_2) = (x_2, x_1 x_2)$

2.
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 by $T(x_1, x_2) = (x_1, x_2, x_1 + 3x_2)$

3.
$$T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$$
 by $T(A) = A + I$, I =identity matrix

4.
$$T: C(\mathbb{R}) \to \mathbb{R}$$
 by $T(f) = f(3)$.

In problems 5-7 T is a linear transformation. Find a basis for ker(T) and Im(T) (ie R(T)). Also determine if T is one-to-one and/or onto.

5.
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 by $T(x_1, x_2) = (0, x_1 + x_2, 3x_2 - x_1)$

6.
$$T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$$
 by $T(p(x)) = xp'(x)$,
where $p(x) = a_0 + a_1x + a_2x^2$

7.
$$T: M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$$
 by
 $T(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}) = \begin{bmatrix} a_{11} - a_{12} & 0 \\ 0 & a_{22} - a_{21} \end{bmatrix}$

8. Let $T: \mathbb{R}^2 \to \mathbb{R}$ be a linear transformation with T(2,1) = -2 and T(1,-3) = 3. Find T(5,6).

9. Does there exist a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(-3,2) = (4,3,2) and T(6,-4) = (-4,-3,-2)?

10. Let *V* and *W* be finite dimensional vector spaces. Suppose $T: V \rightarrow W$ is a linear transformation. Prove that if

a. $\dim(V) < \dim(W)$, then *T* can't be onto

b. $\dim(V) > \dim(W)$, then *T* can't be one-to-one

Hint: Nullity(T) +Rank(T) = dim(V).

11. Suppose that U, V, and W are vector spaces and $T_1: U \to V$ and $T_2: V \to W$ are linear transformations. Prove that $T_2 \circ T_1: U \to W$ defined by $T_2 \circ T_1(u) = T_2(T_1(u))$ is a linear transformation.

12. Let *V* and *W* be finite dimensional vector spaces and $T: V \to W$ a linear transformation. Suppose that $\dim(V) = \dim(W)$ and $N(T) = \{0\}$. Prove that *T* is onto.