Basis and Dimension- HW Problems

In problems 1-4 determine if the vectors form a basis for the given vector space. Explain your answer.

1.
$$< 1, 2, 3, >, < -2, 1, 4 >$$
for \mathbb{R}^3
2. $< 1, 0, 1 >, < 0, 1, 1 >, < 2, 0, 1 >$ for \mathbb{R}^3
3. $< 1, 0, 1 >, < 0, 1, 1 >, < 2, 0, 1 >, < -1, 3, 1 >$ for \mathbb{R}^3
4. $x + 1, x^2 + 1, x^2 + x + 1$ for $P_2(\mathbb{R})$.

5. The vectors $v_1 = < 0, 2, 1 >, v_2 = < 1, 1, 1 >, v_3 = < 1, 2, 3 >,$

 $v_4 = \langle -2, -4, 2 \rangle$, and $v_5 = \langle 3, -2, 2 \rangle$ generate \mathbb{R}^3 (you can assume this). Find a subset of $\{v_1, v_2, v_3, v_4, v_5\}$ that forms a basis for \mathbb{R}^3 .

6. Let $v_1 = \langle 2, -1, 3 \rangle$ and $v_2 = \langle -1, 3, 1 \rangle$ be vectors in \mathbb{R}^3 . Find a vector $v_3 \in \mathbb{R}^3$ such that $S = \{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 . Show that *S* is a basis for \mathbb{R}^3 .

7. $v_1 = <1, 0, 0 >$, $v_2 = <1, 1, 0 >$ and $v_3 = <1, 1, 1 >$ is a basis for \mathbb{R}^3 (you can assume this). Given an arbitrary vector w = <a, b, c > write w as a linear combination of v_1, v_2 , and v_3 .

8. Find the dimension of the space spanned by

a.
$$x, x - 1, x^2 - 1$$
 in $P_2(\mathbb{R})$
b. $x^3 + 2x^2 + 2, x^3 - 3x + 3, x^3 + 6x^2 + 6x$, in $P_3(\mathbb{R})$

In problems 9-13 find a basis and the dimension of W.

9.
$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + x_2 + x_3 = 0\}$$

10. $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_2 = x_3 \text{ and } x_1 + x_4 = 0\}$
11. $W = \{A \in M_{3 \times 3}(\mathbb{R}) | A \text{ is an upper triangular matrix}\}$

12. $W = \{ f \in P_3(\mathbb{R}) | f(0) = 0 \}.$