Given a set of vectors $v_1, \dots v_n$ in a vector space V, we know that:

Span
$$(v_1, \dots, v_n) = \{\alpha_1 v_1 + \dots + \alpha_n v_n, \alpha_i \in \mathbb{R}\} = W$$
 is a subspace of V.

However, it might not be necessary to have all of the vectors $v_1, v_2, ..., v_n$ to span W. It's often useful to know the minimum number of vectors needed to span a vector space.

Ex. Let
$$v_1 = \langle 1, 0, 0 \rangle$$
, $v_2 = \langle 0, 1, 0 \rangle$, $v_3 = \langle 2, 5, 0 \rangle$. Show that the Span $\{v_1, v_2, v_3\} =$ Span $\{v_1, v_2\}$.

Notice that we can write v_3 as a linear combination of v_1 and v_2 :

$$v_3 = 2v_1 + 5v_2$$

Thus any vector w that can be created as a linear combination of v_1,v_2,v_3

$$w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$$

can also be created as a linear combination of just υ_1 and υ_2 :

$$w = \beta_1 v_1 + \beta_2 v_2.$$

For example, let's say:

$$w = 3v_1 + 2v_2 + 4v_3.$$

Since we know $v_3 = 2 v_1 + 5 v_2$, we have:

$$w = 3v_1 + 2v_2 + 4v_3 = 3v_1 + 2v_2 + 4(2v_1 + 5v_2)$$
$$w = 3v_1 + 2v_2 + 8v_1 + 20v_2 = 11v_1 + 22v_2.$$

Whenever one vector, w, can be written as a linear combination of other vectors, $v_1, v_2, ..., v_n$, we say the vectors $v_1, v_2, ..., v_n$, w are **linearly dependent**.

A set of vectors $v_1, ..., v_n$ are said to be **linearly independent** if:

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0$$

implies that: $c_1 = c_2 = c_3 = \cdots = c_n = 0.$

Notice that if a set of vectors $v_1, v_2, ..., v_n$ are linearly dependent, at least one vector can be written as a linear combination of the other vectors.

Let's assume that v_1 can be written as a linear combination of v_2 , ..., v_n , that is:

$$v_1 = c_2 v_2 + c_3 v_3 + \dots + c_n v_n$$
; where not all of the $c_i's$ are 0.

But that means that:

$$c_2v_2 + c_3v_3 + \dots + c_nv_n - v_1 = 0$$
; where not all of the c_i 's are 0.

Hence if the set of vectors v_1, v_2, \ldots, v_n are linearly dependent, then they can't be linearly independent.

Conversely, if a set of vectors is linearly independent then they can't be linearly dependent since if they were linearly dependent we could find a set of c_i 's, not all 0 such that $c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0$.

If $v_1, v_2, ..., v_n$ are linearly dependent, then some vector in this set, say v_i can be written as a linear combination of the other vectors. Thus

$$span\{v_1, v_2, ..., v_{i-1}, v_{i+1}, ..., v_n\} = span\{v_1, v_2, ..., v_n\}.$$

That is, including v_i in the spanning set doesn't increase the span of the vectors.

Thus the minimal set of vectors that spans a given finite dimensional vector space generated by v_1, \ldots, v_n must be linearly independent.

Ex. Show that the vectors $v_1 = < 1, 1, 0 >$, $v_2 = < 1, 0, 1 >$, and $v_3 = < 0, 1, 1 >$ are linearly independent in the vector space \mathbb{R}^3 (we will always assume that the vector space \mathbb{R}^n has the standard vector addition and scalar multiplication unless otherwise stated).

We work from the definition of linearly independence. So assume the there are $c'_i s$ such that

$$c_1v_1 + c_2v_2 + c_3v_3 = 0; \quad c_i \in \mathbb{R}$$

and let's show that $c_1 = c_2 = c_3 = 0$.

$$c_1 < 1, 1, 0 > +c_2 < 1, 0, 1 > +c_3 < 0, 1, 1 > =< 0,0,0 >$$

 $< c_1 + c_2, c_1 + c_3, c_2 + c_3 > =< 0,0,0 >.$

$$\Rightarrow \qquad c_1 + c_2 = 0 \\ c_1 + c_3 = 0 \\ c_2 + c_3 = 0$$

Subtracting equation one from equation two we get:

$$c_1 + c_2 = 0$$

 $-c_2 + c_3 = 0$
 $c_2 + c_3 = 0.$

By adding equation two to equation three we see that $c_3 = 0$.

From equation two we see that if $c_3 = 0$ then $c_2 = 0$.

From equation one we see that if $c_2 = 0$ then $c_1 = 0$.

Hence $c_1 = c_2 = c_3 = 0$ and the three vectors are linearly independent.

Ex. Show the vectors $v_1 = < 2, 1, 1 >$, $v_2 = < -1, 2, 1 >$, and $v_3 = < 1,8,5 >$ are linearly dependent in \mathbb{R}^3 .

We must show that we can find c_1, c_2, c_3 , not all zero such that:

$$c_1v_1 + c_2v_2 + c_3v_3 = 0; \quad c_i \in \mathbb{R}.$$

$$c_1 < 2, 1, 1 > +c_2 < -1, 2, 1 > +c_3 < 1, 8, 5 > =< 0, 0, 0 >$$

 $< 2c_1 - c_2 + c_3, (c_1 + 2c_2 + 8c_3), c_1 + c_2 + 5c_3 > =< 0, 0, 0 >.$

Equating the components we get:

$$2c_1 - c_2 + c_3 = 0$$

$$c_1 + 2c_2 + 8c_3 = 0$$

$$c_1 + c_2 + 5c_3 = 0.$$

Let's start by rearranging the order of the equations so we have c_1 with a coefficient of 1.

$$c_1 + 2c_2 + 8c_3 = 0$$

$$c_1 + c_2 + 5c_3 = 0$$

$$2c_1 - c_2 + c_3 = 0.$$

Subtract equation one from equation two and subtract 2 times equation one from equation three:

$$c_1 + 2c_2 + 8c_3 = 0$$

$$-c_2 - 3c_3 = 0$$

$$-5c_2 - 15c_3 = 0.$$

Multiply equation two by -1:

$$c_1 + 2c_2 + 8c_3 = 0$$

 $c_2 + 3c_3 = 0$
 $-5c_2 - 15c_3 = 0.$

Subtract 2 times equation two from equation one and add 5 times equation two to equation three:

$$c_1 + 2c_3 = 0$$

 $c_2 + 3c_3 = 0$
 $0 = 0.$

Now solve for c_1 and c_2 in terms of c_3 :

$$c_1 = -2c_3$$
$$c_2 = -3c_3.$$

Thus for any real number c_3 , we can choose $c_1 = -2c_3$ and $c_2 = -3c_3$. For example, if $c_3 = 1$ then $c_1 = -2$ and $c_2 = -3$ and

$$-2v_1 - 3v_2 + v_3 = <0,0,0>;$$

$$-2 < 2, 1, 1 > -3 < -1, 2, 1 > +<1, 8, 5> = <0,0,0>.$$

If instead we had chosen $c_3 = -2$, then $c_1 = 4$ and $c_2 = 6$ and

$$4 < 2, 1, 1 > +6 < -1, 2, 1 > -2 < 1, 8, 5 > = < 0, 0, 0 >.$$

Hence the vectors $v_1 = <2, 1, 1 >, v_2 = <-1, 2, 1 >$, and $v_3 = <1,8,5 >$ are linearly dependent in \mathbb{R}^3

Ex. Determine whether the following vectors are linearly independent in $P_2(\mathbb{R})$:

a.
$$x^2 + 1$$
, $x + 1$, $x^2 + x$.

b. $2x^2 + x + 1$, $-x^2 + 2x + 1$, $x^2 + 8x + 5$.

a.
$$c_1(x^2 + 1) + c_2(x + 1) + c_3(x^2 + x) = 0$$

 $(c_1 + c_3)x^2 + (c_2 + c_3)x + (c_1 + c_2) = 0$

So we must have the coefficients of x^2 , x and the constant term equal 0:

$$c_1 + c_3 = 0$$

 $c_2 + c_3 = 0$
 $c_1 + c_2 = 0$

Notice these are the same equations we got when we showed the vectors < 1, 1, 0 >, < 1, 0, 1 >, and < 0,1,1 > were linearly independent in \mathbb{R}^3 (it's no accident that these are the same equations). Thus $c_1 = c_2 = c_3 = 0$ and $x^2 + 1$, x + 1, and $x^2 + x$ are linearly independent in $P_2(\mathbb{R})$.

b.
$$c_1(2x^2 + x + 1) + c_2(-x^2 + 2x + 1) + c_3(x^2 + 8x + 5) = 0$$

 $(2c_1 - c_2 + c_3)x^2 + (c_1 + 2c_2 + 8c_3)x + (c_1 + c_2 + 5c_3) = 0.$

Equating the coefficients of x^2 , x, and the constant term we have:

$$2c_1 - c_2 + c_3 = 0$$

$$c_1 + 2c_2 + 8c_3 = 0$$

$$c_1 + c_2 + 5c_3 = 0.$$

But these are the equations we got when we showed that the vectors < 2, 1, 1 >, < -1, 2, 1 > and < 1,8,5 > were linearly dependent in \mathbb{R}^3 .

Thus for any real number c_3 , if we let $c_1 = -2c_3$ and $c_2 = -3c_3$ then

$$c_1(2x^2 + x + 1) + c_2(-x^2 + 2x + 1) + c_3(x^2 + 8x + 5) = 0.$$

For example, if $c_3 = 1$, then $c_1 = -2$ and $c_2 = -3$ and

$$-2(2x^{2} + x + 1) - 3(-x^{2} + 2x + 1) + 1(x^{2} + 8x + 5) = 0.$$

Thus the polynomials $2x^2 + x + 1$, $-x^2 + 2x + 1$, $x^2 + 8x + 5$ are linearly dependent in $P_2(\mathbb{R})$.

Ex. Determine whether the following vectors are linearly independent in $M_{2\times 2}(\mathbb{R})$:

a.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 ,
 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 ,
 $\begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$

 b.
 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 ,
 $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$
 ,
 $\begin{bmatrix} 3 & 0 \\ 4 & 3 \end{bmatrix}$

a.
$$c_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + c_3 \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 $\begin{bmatrix} c_1 & 0 \\ 0 & c_1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & c_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 2c_3 & c_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} c_1 & 0 \\ 2c_3 & c_1 + c_2 + c_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$

Equating the entries we get:

$$c_1 = 0 2c_3 = 0 c_1 + c_2 + c_3 = 0.$$

The only solution is $c_1 = c_2 = c_3 = 0$, so the vectors are linearly independent.

b.
$$c_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_3 \begin{bmatrix} 3 & 0 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 $\begin{bmatrix} c_1 & 0 \\ 0 & c_1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ c_2 & 0 \end{bmatrix} + \begin{bmatrix} 3c_3 & 0 \\ 4c_3 & 3c_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} c_1 + 3c_3 & 0 \\ c_2 + 4c_3 & c_1 + 3c_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$

Equating the entries we get:

$$c_1 + 3c_3 = 0$$

 $c_2 + 4c_3 = 0$
 $c_1 + 3c_3 = 0.$

Subtracting equation one from equation three we get:

$$c_1 + 3c_3 = 0$$

 $c_2 + 4c_3 = 0$
 $0 = 0.$

Thus for any value of c_3 , $c_1 = -3c_3$ and $c_2 = -4c_3$ and

$$-3c_3\begin{bmatrix}1&0\\0&1\end{bmatrix}-4c_3\begin{bmatrix}0&0\\1&0\end{bmatrix}+c_3\begin{bmatrix}3&0\\4&3\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}.$$

Thus $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 3 & 0 \\ 4 & 3 \end{bmatrix}$ are linearly dependent in $M_{2\times 2}(\mathbb{R})$.

Theorem: Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent then so is S_2 .

Proof: By definition of linear dependence there exist real numbers $c_1, ..., c_n$, not all zero such that $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$ for $S_1 = \{v_1, ..., v_n\}$.

Suppose
$$S_2 = \{v_1, ..., v_n, v_{n+1}, ..., v_{n+m}\}.$$

If we take
$$c_{n+1}, ..., c_{n+m} = 0$$
 then
 $c_1v_1 + c_2v_2 + ... + c_nv_n + c_{n+1}v_{n+1} + \dots + c_{n+m}v_{n+m}$
 $= c_1v_1 + c_2v_2 + ... + c_nv_n$
 $= 0$

where c_1, \ldots, c_{n+m} are not all zero.

Thus S_2 is linearly dependent.

- Corollary: Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent, then S_1 is linearly independent.
- Proof: Suppose that S_1 is linearly dependent. Then by the previous theorem S_2 must be linearly dependent, which is a contradiction. Thus S_1 is linearly independent.

Theorem: Let S be a linearly independent subset of a vector space V, and let $v \in V$ that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in span(S)$.

Proof: If $S \cup \{v\}$ is dependent then there are vectors $v_1, \dots, v_n \in S \cup \{v\}$ such that: $a_1v_1 + \dots + a_nv_n = 0$ for nonzero real numbers a_1, \dots, a_n .

Since S is linearly independent, one of the v_i 's must be v.

Let's say $v_1 = v$, then

$$a_1v + \dots + a_nv_n = 0 \quad \text{and}$$
$$v = -\frac{1}{a_1}(a_2v_2 + \dots + a_nv_n).$$

Thus $v \in span(S)$.

Now assume that $v \in span(S)$ and let's show that $S \cup \{v\}$ is linearly dependent.

Since $v \in span(S)$ there exist vectors $v_1, ..., v_m \in S$ such that

$$v = b_1 v_1 + \dots + b_m v_m.$$

Hence we have:

$$0 = b_1 v_1 + \dots + b_m v_m - v.$$

Since $v \neq v_i$ for i = 1, ..., m the coefficient of v on the RHS is nonzero, So the set $\{v_1, ..., v_n, v\}$ is linearly dependent.

Since $\{v_1, ..., v_n, v\} \subseteq S \cup \{v\}$, $S \cup \{v\}$ is linearly dependent.