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                                            Jordan Canonical Form 

 

Recall that earlier we saw that if 𝑇: 𝑉 → 𝑉 was a linear operator on an                    

𝑛-dimensional vector space represented in an ordered basis by a matrix 𝐴, then 𝑇 

(or 𝐴) was diagonalizable if 

     1.   The characteristic polynomial splits over ℝ, ie 

            𝑝(𝜆) = det(𝐴 − 𝜆𝐼) = 𝑐(𝜆1 − 𝜆)⋯ (𝜆𝑛 − 𝜆);      𝑐 ∈ ℝ 

     2.   For each eigenvalue 𝜆𝑖, the multiplicity of 𝜆𝑖 equals the dim(𝑁(𝑇 − 𝜆𝑖𝐼)). 

 

However, we also saw that if the characteristic polynomial of 𝑇 splits over ℝ that 

𝑇 might not be diagonalizable (eg,  𝐴 = [
1 1
0 1

]).  Given that the characteristic 

polynomial of 𝑇 splits over ℝ, we want to find an ordered basis for 𝑉 so that 𝑇 is 

as close to being diagonal as possible.  We will see that we can find an ordered 

basis 𝐵 for 𝑉 such that: 

                   [𝑇]𝐵 =

[
 
 
 
 
𝐴1 0 0 ⋯ 0
0 𝐴2 0 ⋯ 0
0 0 𝐴3 ⋯ 0
0 0 0 ⋱ ⋮
0 0 0 ⋯ 𝐴𝑘]

 
 
 
 

 

where 0 is a zero matrix and 

                   𝐴𝑖 =

[
 
 
 
 
 
𝜆𝑖 1 0 ⋯ ⋯ 0
0 𝜆𝑖 1 ⋯ ⋯ 0
0 0 𝜆𝑖 ⋱ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ ⋱ 1
0 0 0 ⋯ 0 𝜆𝑖]

 
 
 
 
 

. 

 

That is, each 𝐴𝑖 will have 𝜆𝑖, the 𝑖𝑡ℎ eigenvalue, along the diagonal, ones along the 

“superdiagonal” of 𝐴𝑖, and zeros everywhere else.  The matrix [𝑇]𝐵 is called the 

Jordan canonical form of 𝑻. 
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Ex.  Let 𝐵 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} be an ordered basis for 𝑉 and 𝑇: 𝑉 → 𝑉 a linear 

        operator with  

                  𝐴 = [𝑇]𝐵 = [

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

] . 

         Identify 𝑁(𝑇 − 𝜆𝑖𝐼) for each eigenvalue of 𝑇. 

Notice that in this case: 

         𝐴 = [
𝐴1 0
0 𝐴2

],     where   𝐴1 = [
2 1 0
0 2 1
0 0 2

]  and   𝐴2 = [3]. 

 

The characteristic polynomial for 𝑇 is 

             det(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 [

2 − 𝜆 1 0 0
0 2 − 𝜆 1 0
0 0 2 − 𝜆 0
0 0 0 3 − 𝜆

]    

 

                                      = (2 − 𝜆)3(3 − 𝜆). 

Thus 𝑇 has 𝜆 = 2 as an eigenvalue of multiplicity 3  and  𝜆 = 3 as an eigenvalue of 

multiplicity 1.  Let’s find the eigenvectors of 𝑇. 

 

For  𝜆 = 2 we have to find vectors that span the null space of 𝐴 − 2𝐼: 

            𝐴 − 2𝐼 = [

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

] − [

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

] = [

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

].    
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(𝐴 − 2𝐼)𝑣 = [

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

] [

𝑥1
𝑥2
𝑥3
𝑥4

] = [

0
0
0
0

]    

 

           or                                      [

𝑥2
𝑥3
0
𝑥4

] = [

0
0
0
0

].    

So 𝑥2 = 𝑥3 = 𝑥4 = 0 and 𝑥1 can be any real number. 

Thus the null space of 𝐴 − 2𝐼 is given by {< 𝑎, 0,0,0 >|  𝑎 ∈ ℝ} and is spanned 

by < 1,0,0,0 >.  Since the basis for 𝑉 is {𝑣1, 𝑣2, 𝑣3, 𝑣4},  𝑣1 =< 1,0,0,0 > is an 

eigenvector associated with 𝜆 = 2 for 𝑇.  We can check this by: 

           𝐴𝑣1 = [

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

] [

1
0
0
0

] = [

2
0
0
0

] = 2 [

1
0
0
0

] = 2𝑣1.           

 

For 𝜆 = 3  we need to find the null space of 

    𝐴 − 3𝐼 = [

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

] − [

3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

] = [

−1   1    0 0
   0 −1    1 0
   0    0 −1 0
   0    0    0 0

].   

 

    (𝐴 − 3𝐼)𝑣 = [

−1    1    0 0
   0 −1    1 0
   0    0 −1 0
   0    0    0 0

] [

𝑥1
𝑥2
𝑥3
𝑥4

] = [

0
0
0
0

]    

or                                                 [

−𝑥1 + 𝑥2
−𝑥2 + 𝑥3
−𝑥3
0

] = [

0
0
0
0

].     
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So we have: 

                    −𝑥1 + 𝑥2           = 0 

                              −𝑥2 + 𝑥3 = 0     

                                        −𝑥3 = 0  

⟹    𝑥1 = 𝑥2 = 𝑥3 = 0,    and 𝑥4 can be any real number. 

Thus the null space of   𝐴 − 3𝐼 is given by {< 0,0,0, 𝑎 >|  𝑎 ∈ ℝ} and is spanned 

by < 0,0,0,1 >.   

Thus 𝑣4 =< 0,0,0,1 > is an eigenvector associated with 𝜆 = 3 for 𝑇.    

      

So we can’t diagonalize 𝑇 because there are only 2 linearly independent eigenvectors for 

𝑇 and dim(𝑉) = 4.    

 

In our example the ordered basis for 𝑉 was 𝐵 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and 𝑣1 and 𝑣4 

were eigenvectors for 𝑇, but not the basis vectors 𝑣2 and 𝑣3.  For example: 

                          𝑇(𝑣2) = [

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

] [

0
1
0
0

] = [

1
2
0
0

] = 𝑣1 + 2𝑣2. 

Thus (𝑇 − 2𝐼)𝑣2 = 𝑣1.    

 

Similarly: 

                           𝑇(𝑣3) = [

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

] [

0
0
1
0

] = [

0
1
2
0

] = 𝑣2 + 2𝑣3. 

Thus (𝑇 − 2𝐼)𝑣3 = 𝑣2. 
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So neither 𝑣2 nor 𝑣3 is in the null space of 𝑇 − 2𝐼, however, 

                              (𝑇 − 2𝐼)2𝑣2 = 0 

                              (𝑇 − 2𝐼)3𝑣3 = 0. 

That is, 𝑣2 and 𝑣3 are in the null space of (𝑇 − 2𝐼)2 and (𝑇 − 2𝐼)3 respectively. 

 

We can see this because: 

                             (𝑇 − 2𝐼)𝑣2 = 𝑣1  

and 𝑣1 is in the null space of (𝑇 − 2𝐼) thus 

                             (𝑇 − 2𝐼)[(𝑇 − 2𝐼)𝑣2] = (𝑇 − 2𝐼)𝑣1 

                                               (𝑇 − 2𝐼)2𝑣2 = 0.    

 

Now since  (𝑇 − 2𝐼)𝑣3 = 𝑣2 and (𝑇 − 2𝐼)2𝑣2 = 0 we have: 

                                              (𝑇 − 2𝐼)𝑣3 = 𝑣2 

                         (𝑇 − 2𝐼)2[(𝑇 − 2𝐼)𝑣3] = (𝑇 − 2𝐼)
2𝑣2    

                                            (𝑇 − 2𝐼)3𝑣3 = 0.   

 

So although 𝑣2 and 𝑣3 are not eigenvectors of 𝑇 associated with 𝜆 = 2, that is 

        (𝑇 − 2𝐼)𝑣2 = 𝑣1 ≠ 0  and    (𝑇 − 2𝐼)𝑣3 = 𝑣2 ≠ 0, 

(𝑇 − 2𝐼)𝑣2 = 𝑣1 and (𝑇 − 2𝐼)2𝑣3 = (𝑇 − 2𝐼)[(𝑇 − 2𝐼)𝑣3] = (𝑇 − 2𝐼)𝑣2 = 𝑣1 

are eigenvectors of 𝑇 associated with 𝜆 = 2. 

 

Def.  Let 𝑇 be a linear operator on a vector space 𝑉 and  𝜆 ∈ ℝ.  A nonzero vector 

𝑣 ∈ 𝑉 is called a generalized eigenvector of 𝑻 corresponding to 𝜆 if                     

(𝑇 −  𝜆𝐼)𝑝(𝑣) = 0 for some positive integer 𝑝. 

 

Notice that if 𝑝 = 1 then 𝑣 is an eigenvector of 𝑇. 
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If 𝑣 is a generalized eigenvector of 𝑇 and 𝑝 is the smallest positive integer with 

(𝑇 −  𝜆𝐼)𝑝(𝑣) = 0, then (𝑇 −  𝜆𝐼)𝑝−1(𝑣) is an eigenvector of 𝑇 corresponding to 

𝜆 since:           0 = (𝑇 −  𝜆𝐼)𝑝(𝑣) = (𝑇 − 𝜆𝐼)[(𝑇 −  𝜆𝐼)𝑝−1(𝑣)]. 

Thus   (𝑇 −  𝜆𝐼)𝑝−1(𝑣) ≠ 0 is in the null space of 𝑇 −  𝜆𝐼.  

 

Ex.  In the last example we showed that (𝑇 − 2𝐼)2𝑣2 = 0 and (𝑇 − 2𝐼)3𝑣3 = 0.  

       Show these equations are true by calculating the matrix representation of 

      (𝑇 − 2𝐼)2 and (𝑇 − 2𝐼)3 with respect to the ordered basis 𝐵 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}. 

 

       With respect to the basis 𝐵 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} we have: 

            𝐴 − 2𝐼 = [

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

]       

 

       (𝐴 − 2𝐼)2 = [

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

] [

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

] = [

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

]       

  

        (𝐴 − 2𝐼)3 = [

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

] [

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

] = [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

] . 

 

         (𝐴 − 2𝐼)2𝑣2 = [

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

] [

0
1
0
0

] = [

0
0
0
0

]          
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                (𝐴 − 2𝐼)3𝑣3 = [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

] [

0
0
1
0

] = [

0
0
0
0

]. 

 

So 𝑣2 and 𝑣3 are generalized eigenvectors of 𝑇 corresponding to 𝜆 = 2. 

 

Notice that two different linear operators can have the same characteristic 

polynomial.  Thus knowing the characteristic polynomial of a linear operator does 

not immediately tell us if it’s diagonalizable. 

 

Ex.  Given a basis 𝐵 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} for 𝑉 and two different linear      

        transformations: 

                   𝐴 = [𝑇]𝐵 = [

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

]     

 

                  𝐴′ = [𝑇′]𝐵 = [

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

] 

           

              We have: 

                   𝑝(𝜆) = det(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 [

2 − 𝜆 1 0 0
0 2 − 𝜆 1 0
0 0 2 − 𝜆 0
0 0 0 3 − 𝜆

]    

 

                                                          = (2 − 𝜆)3(3 − 𝜆). 
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                  𝑝′(𝜆) = det(𝐴′ − 𝜆𝐼) = 𝑑𝑒𝑡 [

2 − 𝜆 0 0 0
0 2 − 𝜆 0 0
0 0 2 − 𝜆 0
0 0 0 3 − 𝜆

]    

 

                                                          = (2 − 𝜆)3(3 − 𝜆). 

So 𝑝(𝜆) = det(𝐴 − 𝜆𝐼) = 𝑝′(𝜆) = det(𝐴′ − 𝜆𝐼), but 𝐴 is not diagonalizable while 

𝐴′ is diagonalizable (since it’s already diagonal). 

 

Def.  Let 𝑇 be a linear operator on a vector space 𝑉, and let 𝜆 be an eigenvalue of 

𝑇.  The generalized eigenspace of 𝑻 corresponding to 𝝀, denoted 𝐾𝜆, is 

                𝐾𝜆 = {𝑣 ∈ 𝑉|  (𝑇 − 𝜆𝐼)
𝑝𝑣 = 0, for some positive integer 𝑝}. 

 

Notice that 𝐾𝜆 is a subspace of 𝑉 since if 𝑣1, 𝑣2 ∈ 𝐾𝜆 then 

    (𝑇 − 𝜆𝐼)𝑝1𝑣1 = 0 for some 𝑝1,  and (𝑇 − 𝜆𝐼)𝑝2𝑣2 = 0 for some 𝑝2.   

If we assume 𝑝2 ≥ 𝑝1 then  

     (𝑇 − 𝜆𝐼)𝑝2(𝑣1 + 𝑐𝑣2) = (𝑇 − 𝜆𝐼)
𝑝2(𝑣1) + 𝑐(𝑇 − 𝜆𝐼)

𝑝2(𝑣2) 

                                              = (𝑇 − 𝜆𝐼)(𝑝2−𝑝1)((𝑇 − 𝜆𝐼)𝑝1(𝑣1)) + 𝑐(0) 

                                              = (𝑇 − 𝜆𝐼)(𝑝2−𝑝1)(0) + 0 = 0. 

Thus (𝑣1 + 𝑐𝑣2) ∈ 𝐾𝜆 and 𝐾𝜆 is a subspace of 𝑉.  

 

Notice also that the eigenspace, 𝐸𝜆, associated with the eigenvalue 𝜆 is a 

subspace of 𝐾𝜆 since every eigenvector is also a generalized eigenvector. 
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The following two theorems will be useful for calculating a basis for a vector space 

𝑉 so that a linear operator 𝑇 is in Jordan form. 

 

Theorem:  Let 𝑇 be a linear operator on a finite dimensional vector space 𝑉 such 

that the characteristic polynomial of 𝑇 splits over ℝ, and let 𝜆1, … , 𝜆𝑘 be distinct 

eigenvalues of 𝑇 with corresponding multiplicities 𝑚1, … ,𝑚𝑘 .  For 1 ≤ 𝑖 ≤ 𝑘 let 

𝐵𝑖 be an ordered basis for 𝐾𝜆𝑖.  Then 

           1.   𝐵𝑖 ∩ 𝐵𝑗 = 𝜙 for 𝑖 ≠ 𝑗 

           2.   𝐵 = 𝐵1 ∪⋯∪ 𝐵𝑘 is an ordered basis for 𝑉 

           3.   dim(𝐾𝜆𝑖) = 𝑚𝑖  for all 𝑖. 

 

Now we want to focus on how to find a basis for the generalized eigenspace that 

will give rise to Jordan canonical form for the linear operator 𝑇. 

 

Def.  Let 𝑇 be a linear operator on a vector space 𝑉 and let 𝑣 be a generalized 

eigenvector of 𝑇 corresponding to 𝜆.  Suppose that 𝑝 is the smallest positive 

integer for which (𝑇 − 𝜆𝐼)𝑝𝑣 = 0.  Then the ordered set: 

                    {(𝑇 − 𝜆𝐼)𝑝−1𝑣, (𝑇 − 𝜆𝐼)𝑝−2𝑣, … , (𝑇 − 𝜆𝐼)𝑣, 𝑣}  

Is called a cycle of generalized eigenvectors of 𝑻 corresponding to 𝝀.  

(𝑇 − 𝜆𝐼)𝑝−1𝑣 and 𝑣 are called the initial vector and the end vector of the cycle.  

The length of the cycle is 𝑝. 

Since (𝑇 − 𝜆𝐼)𝑝𝑣 = 0, (𝑇 − 𝜆𝐼)𝑝−1𝑣 is an eigenvector of 𝑇 corresponding to 𝜆 

and the other elements of the cycle are not eigenvectors. 

 

Theorem:  Let 𝑇 be a linear operator on a finite dimensional vector space 𝑉, and 

let 𝜆 be an eigenvalue of 𝑇.  Then 𝐾𝜆 has an ordered basis consisting of a union of 

disjoint cycles of generalized eigenvectors corresponding to 𝜆. 
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Putting a linear operator into Jordan canonical form 

1.  Find all eigenvalues by solving det(𝐴 − 𝜆𝐼) = 0, where 𝐴 = [𝑇]𝐵 for the given 

      basis 𝐵. 

2.   Find all eigenvectors by solving (𝐴 − 𝜆𝐼)𝑣 = 0. 

3.   For each eigenvalue  𝜆 of 𝑇, if the multiplicity of 𝜆 is larger than                     

       𝑑𝑖𝑚[𝑁(𝐴 −  𝜆𝐼)] then generalized eigenvectors are part of the basis to put 

       𝑇 into Jordan canonical form. 

                                                        

Ex.  Let [𝑇]𝐵 = 𝐴 = [
   4      6 −2
−1   −1    1
   0      0    1

].  Find a basis 𝐵′ for 𝑉 such that [𝑇]𝐵′ is in 

       Jordan form.  Find the Jordan form of 𝐴.    

 

First let’s find the eigenvalues of 𝑇. 

         det(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 [
   4 − 𝜆    6 −2
−1  −1 − 𝜆    1
   0    0    1 − 𝜆

] 

                              = (4 − 𝜆)[(−1 − 𝜆)(1 − 𝜆)] − (−1)[6(1 − 𝜆)] 

                              = (1 − 𝜆)[(−1 − 𝜆)(4 − 𝜆) + 6] 

                              = (1 − 𝜆)[𝜆2 − 3𝜆 + 2] = −(𝜆 − 2)(𝜆 − 1)2 = 0   

    So the eigenvalues are  𝜆 = 2, 1 (𝑑𝑜𝑢𝑏𝑙𝑒 𝑟𝑜𝑜𝑡) . 

 

Now let’s find the eigenvectors corresponding to 𝜆 = 2. 

To find the null space of (𝐴 − 2𝐼) we must solve: 

           (𝐴 − 2𝐼)𝑣 = [
   2    6 −2
−1 −3    1
   0    0   −1

] [

𝑥1
𝑥2
𝑥3
] = [

0
0
0
]. 
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Using row operations we get: 

                 

[
   2    6 −2
−1 −3    1
   0    0   −1

]
1
2
𝑅1→𝑅1

→     [
   1     3    −1
−1 −3     5
   0     0  −1

]
𝑅2+𝑅1→𝑅2
→        [

  1    3    −1
   0    0     4
   0     0  −1

]   

 

1

4
𝑅2→𝑅2

→     [
1   3    −1

 0   0       1

 0    0    −1

]
𝑅2+𝑅3→𝑅3
→       [

1   3    −1

 0   0       1

  0    0       0

]
𝑅2+𝑅1→𝑅1
→       [

1   3       0

 0   0       1

  0    0       0

]  

 

So we have: 

                    [
1   3       0
 0   0       1
  0    0       0

] [

𝑥1
𝑥2
𝑥3
] = [

0
0
0
] 

    

                      𝑥1 + 3𝑥2      = 0        ⟹      𝑥1 = −3𝑥2 

                                       𝑥3 = 0           

So the null space of (𝐴 − 2𝐼) is given by  vectors of the form:                                     

< −3𝑎, 𝑎, 0 >= 𝑎 < −3, 1, 0 >;  𝑎 ∈ ℝ.      

Thus < −3, 1, 0 > is a basis for the null space and   𝑣1 =< −3, 1, 0 >  is an 

eigenvector corresponding to 𝜆 = 2. 

 

Now let’s find the eigenvectors corresponding to 𝜆 = 1. 

To find the null space of (𝐴 − 1𝐼) we must solve: 

           (𝐴 − 𝐼)𝑣 = [
   3      6 −2
−1   −2    1
   0      0    0

] [

𝑥1
𝑥2
𝑥3
] = [

0
0
0
]. 
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Using row operations we get: 

                    [
   3      6 −2
−1   −2    1
   0      0    0

]
𝑅1+3𝑅2→𝑅1
→         [

   0    0    1
−1 −2    1
   0    0    0

] 

 

 

𝑅2−𝑅1→𝑅2
→       [

   0    0    1

  −1 −2    0

   0    0    0

] 
𝑅2↔𝑅1
→    [

  −1  −2 0

   0     0  1

   0     0  0

]
−𝑅1→𝑅1
→     [

  1  2 0

   0   0  1

   0   0  0

]. 

 

 

So we have: 

                            [
  1  2 0
   0   0  1
   0   0  0

] [

𝑥1
𝑥2
𝑥3
] = [

0
0
0
]          

 

                            𝑥1 +  2𝑥2        = 0          ⟹      𝑥1 = −2𝑥2 

                                                𝑥3 = 0.          

 So the null space of (𝐴 − 𝐼) is given by vectors of the form:                                       

< −2𝑎, 𝑎, 0 >= 𝑎 < −2, 1, 0 >;   𝑎 ∈ ℝ.      

Thus < −2, 1, 0 > is a basis for the null space and   𝑣2 =< −2, 1, 0 >  is an 

eigenvector corresponding to 𝜆 = 1. 

 

 However, since the multiplicity of 𝜆 = 1 is 2, we have: 

                            2 = dim(𝐾𝜆) = {𝑣 ∈ 𝑉| (𝑇 − 𝜆𝐼)
𝑝𝑣 = 0,    𝑝 ∈ ℤ+}. 

 

 

 



13 
 

Since there is only one eigenvector corresponding to 𝜆 = 1, and dim(𝐾𝜆) = 2, 

when 𝜆 = 1, the basis of 𝐾𝜆 is made up one eigenvector and one vector that is a 

generalized eigenvector (but not an eigenvector).  Since we know that for a 

generalized eigenvector there is a smallest 𝑝 such that (𝑇 − 𝜆𝐼)𝑝𝑣 = 0 and that 

(𝑇 − 𝜆𝐼)𝑝−1𝑣 is an eigenvector, for the generalized eigenvector in 𝐾𝜆 that is not 

the eigenvector 𝑣2 we must have that (𝐴 − 𝜆𝐼)𝑣 is an eigenvector.  Thus to find 𝑣 

we can solve: 

                                                           (𝐴 − 𝐼)𝑣 = 𝑣2    

                                   [
   3      6 −2
−1   −2    1
   0      0    0

] [

𝑥1
𝑥2
𝑥3
] = [

−2
   1
   0
]. 

 

 

Using row operations on the augmented matrix we get: 

 

[
   3      6 −2
−1   −2    1
   0      0    0

|
−2
   1
   0
]
𝑅1+3𝑅2→𝑅1
→         [

   0    0    1
−1 −2    1
   0    0    0

|
  1
   1
   0
]
𝑅2−𝑅1→𝑅2
→        [

     0    0    1
  −1 −2    0
     0    0    0

|
 1
 0
 0
] 

 

                                  
𝑅2↔𝑅1
→    [

  −1  −2 0

   0     0  1

   0     0  0

|
0

 1

 0

]
−𝑅1→𝑅1
→     [

   1 2    0

   0 0    1

   0 0    0

|
0

1

 0

].   

 

So we have: 

                                  [
   1 2    0
   0 0    1
   0 0    0

] [

𝑥1
𝑥2
𝑥3
] = [

     0
    1
     0

] 

 

                                   𝑥1 + 2𝑥2          = 0                ⟹      𝑥1 = −2𝑥2 

                                                        𝑥3 = 1             
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Solution set is:    < −2𝑎, 𝑎, 1 >=< 0, 0, 1 > +𝑎 < −2, 1, 0 >, 𝑎 ∈ ℝ. 

 

Taking 𝑎 = 0,  we can take 𝑣 = 𝑣3 =< 0, 0, 1 > as the 2nd basis vector of 𝐾𝜆. 

 

So now if we take the basis vectors 𝐵′ = {𝑣1, 𝑣2, 𝑣3}: 

           𝑣1 =< −3, 1, 0 > 

           𝑣2 =< −2, 1, 0 > 

           𝑣3 =< 0, 0, 1 >. 

 

[𝑇]𝐵′ will be in Jordan form.  We can see this by taking the change of basis matrix 

𝑃 and calculating its inverse, 𝑃−1 (see notes on A Matrix’s Rank and Calculating 

Inverse Matrices): 

                𝑃 = [
−3 −2    0
   1    1   0
   0    0    1

]  ⟹      𝑃−1 = [
−1 −2 0
   1    3 0
   0    0 1

]. 

 

Now using the change of basis formula, 𝐴′ = 𝑃−1𝐴𝑃 we get: 

    [𝑇]𝐵′ = 𝐴
′ = 𝑃−1𝐴𝑃 = [

−1 −2 0
   1    3 0
   0    0 1

] [
   4    6 −2
−1   −1    1
   0     0    1

] [
−3 −2    0
   1    1   0
   0    0    1

]             

          

                                             = [
−1 −2 0
   1    3 0
   0    0 1

] [
−6 −2   −2
   2    1    1
   0    0    1

]  

 

                                              = [
2 0 0
0 1 1
0 0 1

],  which is in Jordan canonical form. 
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Note: As soon as we saw that the characteristic polynomial split over ℝ and 

that 𝜆 = 2 was an eigenvalue of multiplicity one and 𝜆 = 1 was an eigenvalue of 

multiplicity two where 𝐷𝑖𝑚(𝑁(𝑇 − 𝐼)) = 1, we knew that there was a basis 𝐵′ for 

which: 

                                             [𝑇]𝐵′ = [
2 0 0
0 1 1
0 0 1

].           

 

Most of the work of the previous example was to find the basis 𝐵′. 

 

 

Ex.  Let 𝑇 be a linear operator on 𝑉.  Given a basis 𝐵 = {𝑤1, 𝑤2, 𝑤3},  𝑇 has the 

form 

                           [𝑇]𝐵 = 𝐴 = [
2 1 0
 0 2 2
 0  0 2

]. 

        Find the Jordan canonical form of 𝑇 and the basis 𝐵′ that puts 𝑇 in Jordan 

        canonical form. 

 

First let’s find the eigenvalues of 𝑇. 

       det(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 [
2 − 𝜆 1 0
 0 2 − 𝜆 2
 0  0 2 − 𝜆

] 

                               = (2 −  𝜆)3 = 0. 

So 𝜆 = 2 is an eigenvalue of multiplicity 3.  
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Now let’s find the eigenvectors for 𝜆 = 2. 

To find the null space for (𝐴 − 2𝐼) we must solve: 

         (𝐴 − 2𝐼)𝑣 = [
0   1    0
0    0    2
0    0    0

] [

𝑥1
𝑥2
𝑥3
] = [

0
0
0
]        

                                        𝑥2           = 0       ⟹     𝑥2 = 0 

                                               2𝑥3 = 0        ⟹     𝑥3 = 0. 

 

So the null space of (𝐴 − 2𝐼) is given by < 𝑎, 0, 0 >= 𝑎 < 1, 0, 0 >;   𝑎 ∈ ℝ. 

Thus we can take 𝑣1 =< 1, 0, 0 > as an eigenvector of 𝐴. 

 

So the eigenspace 𝐸 𝜆 has dimension equal to one.  Since there is only one 

eigenvector, but 𝑑𝑖𝑚𝑉 = 3, we need to find two generalized eigenvectors (that 

are not eigenvectors) 𝑣2 and 𝑣3 to complete the basis for 𝑉.  Notice that the basis 

for 𝐾𝜆 can’t be the union of two or three cycles because the initial vector of a 

cycle is an eigenvector and there is only one eigenvector for 𝐴.  Thus the basis for 

𝐾𝜆 must be a single cycle of length 3, 𝐵′ = {(𝐴 − 2𝐼)2𝑣, (𝐴 − 2𝐼)𝑣, 𝑣}, where 

(𝐴 − 2𝐼)2𝑣 is an eigenvector of 𝐴.  

So let’s solve (𝐴 − 2𝐼)2𝑣 = 𝑣1. 

 

                    (𝐴 − 2𝐼)2𝑣 = [
0    1    0
0    0    2
0    0    0

] [
0    1    0
0    0    2
0    0    0

] [

𝑥1
𝑥2
𝑥3
] = [

1
0
0
]            

 

                                           = [
0 0  2
0  0  0
0  0  0

] [

𝑥1
𝑥2
𝑥3
] = [

1
0
0
]        

                                                     2𝑥3 = 1     ⟹     𝑥3 =
1

2
 .      
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So the solution set is < 𝑎, 𝑏,
1

2
>;    𝑎, 𝑏 ∈ ℝ  or  

                        𝑎 < 1, 0, 0 > +𝑏 < 0, 1, 0 > +< 0, 0,
1

2
>.   

 

So if we take 𝑣 = 𝑣3 =< 0, 0,
1

2
>  (ie take 𝑎 = 𝑏 = 0) we have: 

                       𝑣2 = (𝐴 − 2𝐼)𝑣3 = [
0    1    0
0    0    2
0    0    0

] [

0
0
1

2

] = [
  0
   1
   0
].   

So the basis 𝐵′ for Jordan canonical form is given by: 

                         𝑣1 =< 1, 0, 0 > 

                         𝑣2 =< 0, 1, 0 > 

                         𝑣3 =< 0, 0,
1

2
>. 

We can check that this basis puts 𝐴 in Jordan canonical form by taking the change 

of basis matrix 𝑃 and its inverse 𝑃−1 and calculating 𝐴′ = 𝑃−1𝐴𝑃. 

                   𝑃 = [

1 0  0
0 1  0

0  0
1

2

]       ⟹       𝑃−1 = [
1 0  0
0 1  0
0  0 2

]             

 

[𝑇]𝐵′ = 𝐴
′ = 𝑃−1𝐴𝑃 = [

1 0  0
0 1  0
0  0 2

] [
2 1 0
 0 2 2
 0  0 2

] [

1 0  0
0 1  0

0  0  
1

2

]      

   

                                      = [
1    0  0
0    1  0
0    0  2

] [
   2  1   0
   0  2   1
   0  0   1

]     

 

                                                                         = [
2    1    0
0    2    1
0    0    2

],  which is in Jordan canonical form.                                                         


