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                             The Gram-Schmidt Orthonormalization Process 

 

Def.  Let 𝑉 be an inner product space.  A subset of 𝑉 is an orthonormal basis for 𝑉 if it 

is an ordered basis that is orthonormal. 

 

Ex.   The standard basis in ℝ𝑛 is an orthonormal basis. 

 

Ex.   The set {<
3

5
,

4

5
>, <

4

5
, −

3

5
>} is an orthonormal basis for ℝ2 since 

     ‖<
3

5
,

4

5
>‖ = √(

3

5
)

2

+ (
4

5
)

2

= 1,     ‖<
4

5
, −

3

5
>‖ = √(

4

5
)

2

+ (
−3

5
)

2

= 1  

        and   (<
3

5
,

4

5
>) ∙ (<

4

5
, −

3

5
>) =

12

25
−

12

25
= 0. 

 

 

Writing vectors in terms of an orthonormal basis can greatly simplify calculations. 

Ex.  Suppose {𝑣1, 𝑣2, 𝑣3, 𝑣4} is an orthonormal basis for an inner product space 𝑉 

        and 𝑣 = 2𝑣1 − 3𝑣2 + 𝑣3 + 4𝑣4.  Find ‖𝑣‖. 

 

 ‖𝑣‖ = √< 𝑣, 𝑣 >= √< (2𝑣1 − 3𝑣2 + 𝑣3 + 4𝑣4), (2𝑣1 − 3𝑣2 + 𝑣3 + 4𝑣4) >  

      But since {𝑣1, 𝑣2, 𝑣3, 𝑣4} is orthonormal we have that < 𝑣𝑖 , 𝑣𝑗 > = 𝛿𝑖𝑗. 

 

      Thus we have: 

      ‖𝑣‖ = √22 + (−3)2 + 12 + 42 = √30.   
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Theorem:  Let 𝑉 be an inner product space and 𝑆 = {𝑣1, … , 𝑣𝑘} be an orthogonal 

subset of nonzero vectors.  If 𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑆) then  𝑣 = ∑
<𝑣,𝑣𝑖>

‖𝑣𝑖‖2 𝑣𝑖
𝑘
𝑖=1  .  In particular, if 

𝑆 is an orthonormal set then   𝑣 = ∑ < 𝑣, 𝑣𝑖 > 𝑣𝑖 .
𝑘
𝑖=1  

The set {< 𝑣, 𝑣𝑖 >} are called the Fourier coefficients of 𝑣. 

 

Proof:  𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑆)  ⟹                    𝑣 = ∑ 𝑎𝑖𝑣𝑖  ,      𝑎1, … , 𝑎𝑘 ∈ ℝ.𝑘
𝑖=1    

 

                                           < 𝑣, 𝑣𝑗 > =< ∑ 𝑎𝑖𝑣𝑖 ,   𝑣𝑗 >𝑘
𝑖=1     

 

                                                               =< 𝑎𝑗𝑣𝑗 , 𝑣𝑗 >     

 

                                                               = 𝑎𝑗‖𝑣𝑗‖
2

.   

                               

                                        ⟹             
<𝑣,𝑣𝑗>

‖𝑣𝑗‖
2 = 𝑎𝑗.         

 

Corollary:  Let  𝑉 be an inner product space and 𝑆 = {𝑣1, … , 𝑣𝑘} be an orthogonal 

subset of nonzero vectors. Then 𝑆 is linearly independent.    

 

Proof: Suppose that 𝑎1𝑣1 + ⋯ + 𝑎𝑘𝑣𝑘 = 0.   Let’s show that 𝑎1 = ⋯ = 𝑎𝑘 = 0. 

            By the previous theorem 

                                    𝑎𝑗 =
<𝑎1𝑣1+⋯+𝑎𝑘𝑣𝑘,   𝑣𝑗>

‖𝑣𝑗‖
2 = 0;     1 ≤ 𝑗 ≤ 𝑘.       

              Thus 𝑆 = {𝑣1, … , 𝑣𝑘} is linearly independent. 
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Ex.  Let 𝑣 =< 3, −1, 2 > be written in the standard basis for ℝ3.  Write 𝑣 in terms 

       of  the orthonormal basis                                                                           

         {𝑤1, 𝑤2, 𝑤3} = {
1

√2
< 1, 1, 0 > ,   

1

√3
< 1, −1, 1 >,

1

√6
< −1, 1, 2 >}.    That is, 

        find the Fourier coefficients of 𝑣 =< 3, −1, 2 > with respect to  {𝑤1, 𝑤2, 𝑤3}. 

 

      𝑎1 =< 𝑣, 𝑤1 > =<< 3, −1, 2 > ,   
1

√2
< 1, 1, 0 >> 

                                    =
1

√2
(3 − 1 + 0) =

2

√2
= √2. 

 

      𝑎2 =< 𝑣, 𝑤2 > =<< 3, −1, 2 > ,   
1

√3
< 1, −1, 1 >> 

                                    =
1

√3
(3 + 1 + +2) =

6

√3
= 2√3. 

 

      𝑎3 =< 𝑣, 𝑤3 > =<< 3, −1, 2 > ,   
1

√6
< −1, 1, 2 >> 

                                    =
1

√6
(−3 − 1 + 4) = 0. 

 

       Thus we have:      𝑣 = √2𝑤1 + 2√3𝑤2. 

 

        To check this result we see that: 

               √2𝑤1 + 2√3𝑤2 = √2(
1

√2
< 1, 1, 0 >) + 2√3(

1

√3
< 1, −1, 1 >)   

                                             =< 1, 1, 0 > +< 2, −2, 2 > 

                                             =< 3, −1, 2 >= 𝑣.             
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Our next goal is to show that given a basis for a finite dimensional inner product space 

𝑉, we can find an orthonormal basis for 𝑉.  We’ll start by showing how we can create 

an orthogonal basis.  Once we have an orthogonal basis we can create an orthonormal 

basis by dividing each basis vector by its length. 

 

Let’s see how we can create an orthogonal basis in ℝ2 from a given basis {𝑤1, 𝑤2}.   

 

We start by letting 𝑣1 = 𝑤1.      

 

Next we let 𝑣2 = 𝑤2 − 𝑐𝑤1,    𝑐 ∈ ℝ. 

 

Now solve for 𝑐 so that 𝑣2 is orthogonal to 𝑤1   (and hence orthogonal to 𝑣1). 

                  0 =< 𝑣2, 𝑤1 >=< 𝑤2 − 𝑐𝑤1, 𝑤1 > 

                                              =< 𝑤2, 𝑤1 > −𝑐 < 𝑤1, 𝑤1 >. 

     ⟹         𝑐 < 𝑤1, 𝑤1 > =< 𝑤2, 𝑤1 >  

                                           𝑐 =
<𝑤2,𝑤1> 

<𝑤1,𝑤1>
 .     

 

 So          𝑣2 = 𝑤2 −
<𝑤2,𝑤1> 

<𝑤1,𝑤1>
𝑤1    is orthogonal to 𝑣1 = 𝑤1.    

 

This process can be generalized to create an orthogonal basis for any finite 

dimensional inner product space. 

 

The process to create an orthonormal set in the next theorem is called the Gram-

Schmidt process. 
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Theorem:  Let 𝑉 be an inner product space and 𝑆 = {𝑤1, … , 𝑤𝑛} a linearly independent 

subset of 𝑉.  Define 𝑆′ = {𝑣1, … , 𝑣𝑛} where 𝑣1 = 𝑤1 and  

                              𝑣𝑘 = 𝑤𝑘 − ∑
<𝑤𝑘,𝑣𝑗> 

‖𝑣𝑗‖
2 𝑣𝑗

𝑘−1
𝑗=1 ;    for 2 ≤ 𝑘 ≤ 𝑛. 

Then 𝑆′ is an orthogonal set of nonzero vectors such that 𝑠𝑝𝑎𝑛(𝑆′) = 𝑠𝑝𝑎𝑛(𝑆). 

 

Proof:  We prove this theorem by mathematical induction on 𝑛, the number of 

             vectors in 𝑆. 

             If 𝑛 = 1 then 𝑣1 = 𝑤1 ≠ 0, and 𝑆′ = {𝑣1} which is an orthogonal set.   

 

            Now assume the theorem is true for 𝑆𝑘−1
′ = {𝑣1, … , 𝑣𝑘−1} and let’s show 

             that  𝑆𝑘
′ = {𝑣1, … , 𝑣𝑘} is orthogonal where 

                    (∗)               𝑣𝑘 = 𝑤𝑘 − ∑
<𝑤𝑘,𝑣𝑗> 

‖𝑣𝑗‖
2 𝑣𝑗

𝑘−1
𝑗=1 . 

            If 𝑣𝑘 = 0 then 𝑤𝑘 ∈ 𝑠𝑝𝑎𝑛(𝑆𝑘−1
′ ) = 𝑠𝑝𝑎𝑛(𝑆𝑘−1),  which contradicts the 

              assumption that {𝑤1, … , 𝑤𝑛} is linearly independent.  Thus 𝑣𝑘 ≠ 0.  

 

               For 1 ≤ 𝑖 ≤ 𝑘 − 1 we have: 

                         < 𝑣𝑘, 𝑣𝑖 > =< 𝑤𝑘 , 𝑣𝑖 > − ∑
<𝑤𝑘,𝑣𝑗> 

‖𝑣𝑗‖
2 < 𝑣𝑗, 𝑣𝑖 >𝑘−1

𝑗=1  

                                         =< 𝑤𝑘 , 𝑣𝑖 > −
<𝑤𝑘,   𝑣𝑖>

‖𝑣𝑖‖2 < 𝑣𝑖 , 𝑣𝑖 > 

                                         =< 𝑤𝑘 , 𝑣𝑖 > −< 𝑤𝑘 , 𝑣𝑖 > = 0 

     since < 𝑣𝑗 , 𝑣𝑖 >= 0, 𝑖 ≠ 𝑗 by the induction hypothesis.  Hence  𝑆𝑘
′  is 

      orthogonal. 

      By (∗)  𝑠𝑝𝑎𝑛(𝑆𝑘
′ ) ⊆ 𝑠𝑝𝑎𝑛(𝑆𝑘). 

      But 𝑆𝑘
′  and 𝑆𝑘 are both linearly independent sets so                    

      dim(𝑠𝑝𝑎𝑛(𝑆𝑘
′ )) = dim(𝑠𝑝𝑎𝑛(𝑆𝑘))    ⟹     𝑠𝑝𝑎𝑛(𝑆𝑘

′ ) = 𝑠𝑝𝑎𝑛(𝑆𝑘).     
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Ex.  Let 𝑤1 =< 4, 2, 2, 1 > ,   𝑤2 =< 2, 0, 0, 2 >  and  𝑤3 =< 1, 1, −1, 1 > be vectors 

in ℝ4.  By a straight forward calculation one can check that {𝑤1, 𝑤2, 𝑤3} is linearly 

independent.  Use the Gram-Schmidt process to create an orthogonal set {𝑣1, 𝑣2, 𝑣3} 

with the same span as {𝑤1, 𝑤2, 𝑤3}. Then normalize {𝑣1, 𝑣2, 𝑣3}  (ie divide by their 

lengths to create unit vectors) to  create an orthonormal set  {𝑢1, 𝑢2, 𝑢3} with the 

same span as {𝑤1, 𝑤2, 𝑤3}.  Find the Fourier coefficients  of 𝑣 =< −1, 3, 1, −3 > with 

respect to the  {𝑢1, 𝑢2, 𝑢3}. 

 

𝑣1 = 𝑤1 =< 4, 2, 2, 1 >.    

 

𝑣2 = 𝑤2 −
< 𝑤2, 𝑣1 > 

‖𝑣1‖2
𝑣1 

      =< 2, 0, 0, 2 > −
<<2,0,0,2>,<4,2,2,1> >

42+22+22+12 < 4, 2, 2, 1 >     

      =< 2, 0, 0, 2 > −
2

5
< 4, 2, 2, 1 >=

2

5
< 1, −2, −2, 4 >.     

 

𝑣3 = 𝑤3 −
< 𝑤3, 𝑣1 > 

‖𝑣1‖2
𝑣1 −

< 𝑤3, 𝑣2 > 

‖𝑣2‖2
𝑣2 

      =< 1, 1, −1, 1 > −
<<1,1,−1,1>,<4,2,2,1>  >

42+22+22+12 < 4, 2, 2, 1 >

                                                − 
<<1,1,−1,1>,2

5
 <1,−2,−2,4>>

4
2

5
 < 1, −2, −2, 4 > 

     =< 1, 1, −1, 1 > −
1

5
< 4, 2, 2, 1 > −

1

5
< 1, −2, −2, 4 > 

     =< 0, 1, −1, 0 >.    

 

So   𝑣1 =< 4, 2, 2, 1 >             

       𝑣2 =
2

5
< 1, −2, −2, 4 > 

       𝑣3 =< 0, 1, −1, 0 >.    
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Normalizing these vectors we get: 

    𝑢1 =
𝑣1

‖𝑣1‖
=

1

5
< 4, 2, 2, 1 >                       

    𝑢2 =
𝑣2

‖𝑣2‖
=

1

5
< 1, −2, −2, 4 >  

𝑢3 =
𝑣3

‖𝑣3‖
=

1

√2
< 0, 1, − 1, 0 >.    

 

    To find the Fourier coefficients: 

    < 𝑣, 𝑢1 >=<< −1, 3, 1, −3 > ,
1

5
< 4, 2, 2, 1 > >   

                      =
1

5
(−4 + 6 + 2 − 3) =

1

5
   

 

    < 𝑣, 𝑢2 > =<< −1, 3, 1, −3 > ,
1

5
< 1, −2, −2, 4 >> 

                       =
1

5
(−1 − 6 − 2 − 12) = −

21

5
   

 

< 𝑣, 𝑢3 >=<< −1, 3, 1, −3 > ,
1

√2
< 0, 1, − 1, 0 >>   

                   =
1

√2
(0 + 3 − 1 + 0) =

2

√2
= √2 . 

 

Notice that since 𝑣 =< −1, 3, 1, −3 > is not in the 𝑠𝑝𝑎𝑛{𝑢1, 𝑢2, 𝑢3}  

                         𝑣 ≠ 𝑎1𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3 

for any 𝑎1, 𝑎2, 𝑎3 ∈ ℝ.  Thus the best we can say is  

 

 𝑣 =< −1, 3, 1, −3 >≈
1

5
(

1

5
< 4, 2, 2, 1 >)  −

21

5
(

1

5
< 1, −2, −2, 4 >) 

                                                    +√2(
1

√2
< 0, 1, − 1, 0 >).    
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In fact, it’s the “best” possible approximation of < −1, 3, 1, −3 >. 

Suppose we measure the distance between two vectors 𝑣, 𝑤 ∈ 𝑉 by  

                              𝑑𝑖𝑠𝑡(𝑣, 𝑤) = ‖𝑣 − 𝑤‖. 

We can then ask the question, suppose 𝑤 ∈ 𝑉 and 𝑣 ∈ 𝑉′ ⊆ 𝑉, what vector                

𝑣 ∈ 𝑉′ ⊆ 𝑉 minimizes 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = ‖𝑣 − 𝑤‖? 

 

 

As we will see in the next theorem, if {𝑣1, 𝑣2, … , 𝑣𝑘} is an orthonormal basis for 𝑉′ ⊆ 𝑉 

then the vector 𝑣 ∈ 𝑉′ ⊆ 𝑉 that minimizes 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ for  𝑤 ∈ 𝑉, is the 

vector 𝑣 = 𝛼1𝑣1 + ⋯ + 𝛼𝑘𝑣𝑘, where 𝛼𝑖 is the 𝑖𝑡ℎ Fourier coefficient, 𝛼𝑖 =< 𝑤, 𝑣𝑖 > 

of 𝑤.  Thus 𝑣 =< 𝑤, 𝑣1 > 𝑣1 + ⋯ +< 𝑤, 𝑣𝑘 > 𝑣𝑘 is the best approximation of 𝑤 in 

the sense that 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ is as small as it can be among vectors in 𝑉′ ⊆ 𝑉. 

 

 

𝑤 

𝑣 

‖𝑣 − 𝑤‖ 
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Theorem: Let 𝑉 be a finite dimensional inner product space and 𝑉′ ⊆ 𝑉 a subspace of 

𝑉.  Suppose that {𝑣1, … , 𝑣𝑛} is an orthonormal basis for 𝑉 and {𝑣1, … , 𝑣𝑘}, where    

 𝑘 ≤ 𝑛, is an orthonormal basis for 𝑉′ ⊆ 𝑉. Given any vector 𝑤 ∈ 𝑉 the vector in      

𝑣 ∈ 𝑉′ that minimizes 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ is                                                                         

                                  𝑣 =< 𝑤, 𝑣1 > 𝑣1 + ⋯ +< 𝑤, 𝑣𝑘 > 𝑣𝑘. 

 

Proof.  Since {𝑣1, … , 𝑣𝑛}  is an orthonormal basis for 𝑉 we can write:   

                       𝑤 =< 𝑤, 𝑣1 > 𝑣1 + ⋯ +< 𝑤, 𝑣𝑛 > 𝑣𝑛. 

Since {𝑣1, … , 𝑣𝑘} is a basis for 𝑉′ ⊆ 𝑉 we can represent any vector 𝑣 ∈ 𝑉′ by 

                       𝑣 = 𝛼1𝑣1 + ⋯ + 𝛼𝑘𝑣𝑘. 

To find a vector that minimizes 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ it is equivalent to find one that 

minimizes (𝑑𝑖𝑠𝑡(𝑣, 𝑤))
2

= ‖𝑣 − 𝑤‖2. 

‖𝑣 − 𝑤‖2 =< (𝑣 − 𝑤), (𝑣 − 𝑤) >  

       =< (𝛼1−< 𝑤, 𝑣1 >)𝑣1 + ⋯ + (𝛼𝑘−< 𝑤, 𝑣𝑘 >)𝑣𝑘 − ⋯ −< 𝑤, 𝑣𝑛 > 𝑣𝑛, 

                   (𝛼1−< 𝑤, 𝑣1 >)𝑣1 + ⋯ + (𝛼𝑘−< 𝑤, 𝑣𝑘 >)𝑣𝑘 − ⋯ −< 𝑤, 𝑣𝑛 > 𝑣𝑛 >. 

 

Since < 𝑣𝑖 , 𝑣𝑗 > = 𝛿𝑖𝑗 we get: 

‖𝑣 − 𝑤‖2 = (𝛼1−< 𝑤, 𝑣1 >)2 + ⋯ + (𝛼𝑘−< 𝑤, 𝑣𝑘 >)2 + ⋯ +< 𝑤, 𝑣𝑛 >2. 

 

The RHS has a minimum value at: 

 𝛼1−< 𝑤, 𝑣1 > = 0, … , 𝛼𝑘−< 𝑤, 𝑣𝑘 > = 0   or  

 𝛼1 =< 𝑤, 𝑣1 >, … , 𝛼𝑘 =< 𝑤, 𝑣𝑘 > .   

 

Hence:    𝑣 =< 𝑤, 𝑣1 > 𝑣1 + ⋯ +< 𝑤, 𝑣𝑘 > 𝑣𝑘 minimizes 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = ‖𝑣 − 𝑤‖. 
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Ex.  Let 𝑉 = {𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑛 [0.1]} with the inner 

       product < 𝑓, 𝑔 >= ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥.
1

0
  Consider the subspace 𝑊 ⊆ 𝑉 where  

      𝑊 = {𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 2 𝑜𝑛 [0,1]} with the 

       ordered basis {1, 2𝑥, 3𝑥2}.  Find an orthogonal basis for 𝑊 and then normalize it to 

       obtain an orthonormal basis for 𝑊.    

 

      𝑤1 = 1,     𝑤2 = 2𝑥,     𝑤3 = 3𝑥2. 

      𝑣1 = 𝑤1 = 1.    

       

           𝑣2 = 𝑤2 −
<𝑤2,𝑣1> 

‖𝑣1‖
2 𝑣1        

           = 2𝑥 −
∫ 2𝑥(1)𝑑𝑥

1
0

∫ 12𝑑𝑥
1
0

(1)    

      ∫ 2𝑥(1)𝑑𝑥
1

0
= 𝑥2|

1
0

= 1;         ∫ 12𝑑𝑥
1

0
= 𝑥|

1
0

= 1      so 

 

       𝑣2 = 2𝑥 −
1

1
(1) = 2𝑥 − 1. 

     

𝑣3 = 𝑤3 −
< 𝑤3, 𝑣1 > 

‖𝑣1‖2
𝑣1 −

< 𝑤3, 𝑣2 > 

‖𝑣2‖2
𝑣2 

       = 3𝑥2 −
∫ 3𝑥2(1)𝑑𝑥

1
0

∫ 12𝑑𝑥
1
0

(1) −
∫ 3𝑥2(2𝑥−1)𝑑𝑥

1
0

∫ (2𝑥−1)
2

𝑑𝑥
1
0

(2𝑥 − 1)    

        = 3𝑥2 −
𝑥3|

1
0

1
(1) −

∫ (6𝑥3−3𝑥2)𝑑𝑥
1
0

∫ (4𝑥2−4𝑥+1)𝑑𝑥
1
0

(2𝑥 − 1)   

        = 3𝑥2 − 1 −
1

2
1

3

(2𝑥 − 1) = 3𝑥2 − 3𝑥 +
1

2
 . 
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So {1, (2𝑥 − 1), (3𝑥2 − 3𝑥 +
1

2
)} is an orthogonal basis for 𝑊. 

Now we normalize {𝑣1, 𝑣2, 𝑣3} to get {𝑢1, 𝑢2, 𝑢3} an orthonormal basis for 𝑊. 

 

𝑢1 =
𝑣1

‖𝑣1‖
=

1

√∫ 12𝑑𝑥
1

0

=
1

1
= 1 

 

 

 

𝑢2 =
𝑣2

‖𝑣2‖
=

2𝑥 − 1

√∫ (2𝑥 − 1)2𝑑𝑥
1

0

=
(2𝑥 − 1)

√1
3

= √3(2𝑥 − 1) 

 

 

 

𝑢3 =
𝑣3

‖𝑣3‖
=

3𝑥2 − 3𝑥 +
1
2

√∫ (3𝑥2 − 3𝑥 +
1
2)

2

𝑑𝑥
1

0

 

                     =
3𝑥2−3𝑥+

1

2

√∫ (9𝑥4−18𝑥3+12𝑥2−3𝑥+
1

4
)𝑑𝑥

1
0

 

                    =
3𝑥2−3𝑥+

1
2

√ 1
20

 = √5(6𝑥2 − 6𝑥 + 1).   
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Ex.  Find the Fourier coefficients of 𝑓(𝑥) = 2 − 3𝑥2 using the orthonormal basis found 

in the previous example and write 𝑓(𝑥) as a linear combination of this orthonormal 

basis.  

𝑢1 = 1 ,          𝑢2 = √3(2𝑥 − 1),       𝑢3 = √5(6𝑥2 − 6𝑥 + 1).  

 

< 𝑓(𝑥),  𝑢1 >= ∫ (2 − 3𝑥2)(1)𝑑𝑥 = (2𝑥 − 𝑥3)|
1
0

= 1
1

0
 .   

 

< 𝑓(𝑥),  𝑢2 >= ∫ (2 − 3𝑥2)(√3(2𝑥 − 1))𝑑𝑥
1

0

 

                     = √3 ∫ (−6𝑥3 + 3𝑥2 + 4𝑥 − 2)𝑑𝑥
1

0
 

                     = √3 (−
3𝑥4

2
+ 𝑥3 + 2𝑥2 − 2𝑥)|

1
0

 

                     = −
√3

2
 

 

< 𝑓(𝑥),  𝑢3 >= ∫ (2 − 3𝑥2) (√5(6𝑥2 − 6𝑥 + 1)) 𝑑𝑥
1

0

 

                         = √5 ∫ (−18𝑥4 + 18𝑥3 + 9𝑥2 − 12𝑥 + 2)𝑑𝑥
1

0
 

                      = √5 (−
18

5
𝑥5 +

9

2
𝑥4 + 3𝑥3 − 6𝑥2 + 2𝑥)|

1
0

 

                       = −
√5

10
 . 

 

So we can express 𝑓(𝑥) as a linear combination of {𝑢1, 𝑢2, 𝑢3} as: 

𝑓(𝑥) = 2 − 3𝑥2 = 1(1) −
√3

2
(√3(2𝑥 − 1)) −

√5

10
(√5(6𝑥2 − 6𝑥 + 1)). 


