The Gram-Schmidt Orthonormalization Process

Def. Let V be an inner product space. A subset of V is an orthonormal basis for V if it
is an ordered basis that is orthonormal.

Ex. The standard basis in R™ is an orthonormal basis.
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Writing vectors in terms of an orthonormal basis can greatly simplify calculations.

Ex. Suppose {v;, V,, V3, v,} is an orthonormal basis for an inner product space V
and v = 2v; — 3v, + v; + 4v,. Find ||v||.

lvll = V<v, v>= < 2v, — 30, + v3 + 4v,), (2vy — 3V, + V3 + 4v,) >

But since {vy, v, V3, v} is orthonormal we have that < v;, v; > = §;.

Thus we have:

lvll = 2% + (=3)? + 12 + 4% = V/30.




Theorem: Let V be an inner product space and S = {v;, ..., v} be an orthogonal
kK <vvi>
=1 w12

subset of nonzero vectors. If v € span(S) then v = ), V; . In particular, if

: _ vk
S is an orthonormal setthen v =)°, < v, v; > v,.
The set {< v, v; >} are called the Fourier coefficients of v.

Proof: v € span(S) = V= Zi;l a;v;, aq,..,a; €R.

<, Vj > =< Z{-‘zl a;vi, vj >

< ajvj, 'Uj >

2
= ajl|v™

<v,vj>
2 — aj.
v

Corollary: Let V be aninner product space and S = {v;, ..., v} } be an orthogonal
subset of nonzero vectors. Then S is linearly independent.

Proof: Suppose that a;v; + -+ a,v, = 0. Let'sshowthata; =+ = aq;, = 0.

By the previous theorem

<aqvi+:---+a;v;, vi> .
aj = 1 Zkk I~ =0; 1<j<k.
[l

Thus S = {v4, ..., U } is linearly independent.



Ex. Let v =< 3,—1,2 > be written in the standard basis for R3. Write v in terms
of the orthonormal basis
1

1 1 .
{fwy, w,,wi} = {Ti <1,1,0>, =< L,-1,1> =<-1,1,2>}. Thatis,

find the Fourier coefficients of v =< 3, —1, 2 > with respectto {w;,w,, ws}.

1
a, =<v, w; >=<<3,-1,2>, =<1,10>>

1 2
==B-1+0=%="2
a, =< v, wy >=<<3,-1,2 >, %< 1,-1,1>>
1 6
==B+1++2)=£=2V3.
1
as =< U, W3 > =<< 3,_1,2 >, ﬁ<_1,1,2 >>

1
==(-3-1+4)=0.

Thus we have: v = 2w, + 2v/3w,.

To check this result we see that:
V2w, + 2v3w, = */7(% <1,1,0>)+ 2‘/5(715 <1,-1,1>)

=<11,0>+<2,-2,2>
=< 3,-1,2>=w.



Our next goal is to show that given a basis for a finite dimensional inner product space
IV, we can find an orthonormal basis for V. We’'ll start by showing how we can create
an orthogonal basis. Once we have an orthogonal basis we can create an orthonormal
basis by dividing each basis vector by its length.

Let’s see how we can create an orthogonal basis in R? from a given basis {w;, w,}.

We start by letting v; = wj.

Next we let Vy =Wy, —CWq, C € R.

Now solve for ¢ so that v, is orthogonal to w; (and hence orthogonal to v,).

0 =< Uy, Wi >=< Wy — CWq, Wq >

=< Wy, Wq > —Cc < Wi, Wq >.

= C<W1,W1>=<W2,W1>
_ <wp,wi>
o<wwy>
<wy,wi> .
So vV, = W, ——————W; isorthogonal tov; = wy.

<wi,wi>

This process can be generalized to create an orthogonal basis for any finite
dimensional inner product space.

The process to create an orthonormal set in the next theorem is called the Gram-
Schmidt process.



Theorem: Let V be an inner product space and S = {wy, ..., w,, } a linearly independent
subset of V. Define S’ = {v,, ..., v, } where v; = w; and

k—1 <Wk,1]j>
T
7=5 i

Then S’ is an orthogonal set of nonzero vectors such that span(S’) = span(S).

Vp = Wi — vj; for2<k<n.

Proof: We prove this theorem by mathematical induction on n, the number of
vectorsin S.

If n = 1thenv;, = w; # 0,and S’ = {v,} which is an orthogonal set.

Now assume the theorem is true for S;_; = {v4, ..., Vx_1} and let’s show
that S;, = {v4, ..., v } is orthogonal where

< >
() wy — 2] h”"ﬁf vj.
Yj

If v, = 0 then wy, € span(S;_,) = span(Si_1), which contradicts the
assumption that {wy, ..., w, } is linearly independent. Thus v, # 0.

Forl <i <k —1we have:

<wy,V
<V, v >=< Wy, V; > — Zk 1#<v], v >
[l
j
<wg, v;>
=< Wy, v; > —W<vi, v; >
i

=<Wk, Ui>—<Wk, ’Ul'>=0
since < v;, v; >= 0, { # j by the induction hypothesis. Hence Sy is
orthogonal.
By (*) span(Sy) S span(Sy).

But S, and S, are both linearly independent sets so
dim(span(S;)) = dim(span(S,)) = span(S;) = span(Sy).



Ex. Letw; =<4,2,2,1>, w,=<2,0,0,2> and w3 =<1,1,—1,1 > be vectors
in R*. By a straight forward calculation one can check that {w;, w,, w3} is linearly
independent. Use the Gram-Schmidt process to create an orthogonal set {v,, v,, v3}
with the same span as {w;, w,, w3 }. Then normalize {v,, v,, v3} (ie divide by their
lengths to create unit vectors) to create an orthonormal set {u,, u,, us} with the
same span as {w;, w,, wsz}. Find the Fourier coefficients of v =< —1,3, 1,—3 > with

respect to the {uy,u,, us}.

v, =W =< 4,2,2,1 >.

< Wy, V1>
UV, =Wy V1
V1112
<<L2,0,0,2>,<4,2,2,1> >
=< 2,002 > — <4221>

424224 2% 412

2 2
=< 2,002 > —§<4,2,2,1 >=E< 1,-2,-2,4 >.

<wsg, V1> < Wws, Uy >
U3 = W3 U3

V1112 V2112

1,1,-1,1 42,21

—<1,1,-1,1> -SSR LISSSS2 2 42,21 >
454254241
2
<<1,1,-1,1>:<1,-2,—-2,4>>
- 5 2<1,-2,-2,4>

4 5
—< 1,1,—1,1>—§<4,2,2,1 > —§< 1,-2,-2,4 >

=<0,1,-1,0 >.

So v =<4,2,2,1>
v, =2<1,-2,-2,4>
5

v =< 0,1,—-1,0 >.



Normalizing these vectors we get:

U1 _1

= =0 <4,2,2,1>
w,=-2=c1,-2-24>
vl 5
_vs _ 1 _
Uy == < 0,1,-1,0>.

To find the Fourier coefficients:

1
<v uy >=<<-1,3,1,-3 >'E<4'2'2'1>>

1 1
_E(_4+6+2_3)_E
<, Uy >=<<-1,3,1,-3>,2<1,-2,-2,4>>

1 21
=-(-1-6-2-12)=-=

1
<7V uz >=<<-1,3,1,-3 >,E<0,1,—1,0 >>
1 2
=5(0+3-1+0)===12.

Notice that since v =< —1, 3,1, —3 >is not in the span{u,, u,, us}
vV F auq + au, + azus

for any a4, a,, az; € R. Thus the best we can say is

v=<-1,31,-3>~:(:<4221>) -2 (:<1,-2,-2,4>)
5°5 5 \5

+‘/7(¢iz <0,1,—1,0 >).



In fact, it’s the “best” possible approximation of < —1,3,1, -3 >.
Suppose we measure the distance between two vectors v,w € I/ by
dist(v,w) = [|lv — w].

We can then ask the question, suppose w € V and v € V' € V, what vector
v € V' €V minimizes dist(v,w) = ||lv — w||?

lv—wil|

As we will see in the next theorem, if {v;, v,, ..., U} is an orthonormal basis for V' € V
then the vector v € V' € V that minimizes dist(v,w) = ||lv — w|| for w € V, is the
vector v = @,y + -+ + @, vy, where q; is the i*" Fourier coefficient, a; =< w, v; >
of w. Thusv =<w,v; > vy + - +< W,V > v is the best approximation of w in
the sense that dist(v,w) = ||v — w|| is as small as it can be among vectorsin V' € V.



Theorem: Let V be a finite dimensional inner product space and V' € V' a subspace of
V. Suppose that {v,, ..., v, } is an orthonormal basis for V and {v,, ..., v} }, where
k < n, is an orthonormal basis for V' € V. Given any vector w € V the vector in
v € V' that minimizes dist(v,w) = ||lv — w|| is
V=<W,U; > U+ -+ W,V > V.

Proof. Since {vy, ..., v,,} is an orthonormal basis for VV we can write:
w=<Wwv >V + -+ Wv, >,

Since {v, ..., v} is a basis for V' € V we can represent any vector v € V' by
V=V + o+ agvy.

To find a vector that minimizes dist(v,w) = ||v — w|| it is equivalent to find one that

minimizes (dist(v, W))2 = |lv—w|.
lv-wl?=<@-w),v-w) >
=< (=< w,v; >)v; + -+ (A=< W, v >V — = —< W, U, > Up,

(=< w, vy >)v; + -+ (=< W, v, S)vp — = —< W, U, > Uy >,

Since < v;, v; > = §;; we get:

lv —wl|? = (a;—< w,v; >)2 + -+ (ap—< W, v >)? + - +< w, v, >2.
The RHS has a minimum value at:
a;—<w,v;>=0,..., ap—<w,v, >=0 or

al =< W,Ul >,...,0(k =< W,vk >,

Hence: v =<w,v; > v; + - +< W,V > U minimizes dist(v,w) = [|lv — w|].



10

Ex. Let V = {polynomials with real coef ficients on [0.1]} with the inner
product< f, g >= folf(x)g(x)dx. Consider the subspace W € V where

W = {polynomials with real coef ficients of degree < 2 on [0,1]} with the
ordered basis {1, 2x, 3x2}. Find an orthogonal basis for W and then normalize it to
obtain an orthonormal basis for W'.

w; =1, wy,=2x, ws=3x2

Ul=W1=1.

<W2,U1>
Vy = Wy — — 5 V1
[v4ll
1
2x(1)dx
Jo 17dx

1 _ 21 _ .. 12— 1 _
f02x(1)dx—x|0—1, foldx—xlo—l o)

v2=2x—%(1)=2x—1.

e _<wz, v > , _<w, 1 > ,
o A A
fl 3x2(1)dx fl 3x? (2x—1)dx
=3x2—01—2(1)—01 5 (2x—1)
fo 1°dx Jo 2x—=1)"dx
2 x3 0 fo (6x3—3x2)dx
=3x‘——(1) - (2x —1)

fo (4x2—4x+1)dx

1
=3x2—1—%(2x—1)=3x2—3x+%.
3



so{l, 2x—1), 3x*—3x+ %)} is an orthogonal basis for W.

Now we normalize {v;, v,, v3} to get {uy, u,, us} an orthonormal basis for W.

v 1 _1_
YTl T T 1
Jo 1%dx
SR Sk SN C: 2k NN PN
, = = = =
v
vl \/fol(Zx—l)zdx \/%
Vs 3x2—3x+%
u — —
> sl 1 1\°
Jo (3x2—3x+7) dx
3x2—3x+%

\/f01(9x4—18x3+12x2—3x+%)dx

3x2—3x+%

1
20

=/5(6x2% — 6x + 1).

11



12

Ex. Find the Fourier coefficients of f(x) = 2 — 3x?2 using the orthonormal basis found
in the previous example and write f(x) as a linear combination of this orthonormal
basis.

w=1, u,=v32x—-1), uz=+5(6x?-6x+1).

< f(x), uy >= f01(2 —3x2)(1)dx = (2x — x3)|(1) =1.

< f(x), u, >= jl(Z — 3x2)(\/§(2x — 1))dx
0

=3 fol(—6x3 + 3x2 + 4x — 2)dx

3x*

=3 (—7+x3+2x2—2x)|(1)

1
< f(x), uz >= j (2 — 3x2) (\/§(6X2 — 6x + 1)) dx
0
=5 [1(—18x* + 18x3 + 9x% — 12x + 2)dx
5

=5 (—=x5 +§x4 +3x3 —6x% + 2x)|(1)

_ V5

10

So we can express f(x) as a linear combination of {u;, u,, us} as:

fx) =2-3x2 =1(1) - 2(V3@x - 1) - 3 (V5(6x2 — 6x + 1)).



