Diagonalizability- HW Problems

For problems 1-6 determine if the matrix, A, is diagonalizable.

1.	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
2.	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	3 1	
3.	$[^{2}_{1}$	$\begin{bmatrix} -8 \\ -4 \end{bmatrix}$	
4.	[2 0 0	2 1 0	1 ⁻ 2 -1-
5.	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	1 1 0	0 1 2
6.	$\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$	1 1 0	$\begin{bmatrix} 0\\0\\3 \end{bmatrix}$

In problems 7 and 8 determine if the linear operator T is diagonalizable. If it is, find a basis for which T is diagonal.

7.
$$T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$$
 by
 $T(a_0 + a_1x + a_2x^2) = 2a_0 + (-a_0 + 4a_1)x + (-3a_0 + 6a_1 + 2a_2)x^2$

8.
$$T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
 by $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} d & b \\ c & a \end{bmatrix}$

9. Let $A = \begin{bmatrix} 5 & 6 \\ -2 & -2 \end{bmatrix}$. Find A^5 and A^{-1} by first writing $A = PDP^{-1}$ where D is a diagonal matrix.

10. Suppose $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable and all of its eigenvalues are 1 or -1. Prove $A^{-1} = A$.

11. Find the values of k for which
$$A = \begin{bmatrix} 4 & 6 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & k \end{bmatrix}$$
 is not diagonalizable.