Eigenvalues and Eigenvectors

Calculations involving matrices can become quite messy. For example, if we need to calculate powers of an $n \times n$ matrix A, this can be cumbersome. However, if we can find a basis for which A is a diagonal matrix (ie $A_{ij} = 0$ if $i \neq j$) then caclulations become easier.

Def. A linear operator T (ie a linear transformation mapping $V \rightarrow V$) on a finite dimensional vector space V is called **diagonalizable** if there is an ordered basis B of V such that $[T]_B$ is a diagonal matrix. A square matrix is called diagonalizable if L_A is diagonalizable.

Notice that if $B = \{v_1, ..., v_n\}$ is an ordered basis for V for which $T: V \to V$ is diagonalizable then if $A = [T]_B$ and $v_i \in B$ we have

$$
T(v_j) = \sum_{i=1}^n A_{ij} v_i = A_{jj} v_j = \lambda_j v_j, \text{ where } \lambda_j = A_{jj}.
$$

Conversely, if $B = \{v_1, ..., v_n\}$ is an ordered basis for V such that $T\bigl(\hspace{0.5mm}v_j\hspace{0.5mm}\bigr)=\lambda_j\hspace{0.5mm}v_j$, for $\lambda_j\in\mathbb{R}$ then

Def. Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an **eigenvector** of T if there exists a $\lambda \in \mathbb{R}$ such that $T(v) = \lambda v$. λ is called the **eigenvalue** of T corresponding to v .

So a linear operator $T: V \to V$, V a finite dimensional vector space, is diagonalizable if and only if there exists an ordered basis $B = \{v_1, ..., v_n\}$ for V of eigenvectors of T .

Ex. Let $A = |$ 1 3 $\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$, $v_1 =$ 1 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and $v_2 = \begin{bmatrix} 1 \end{bmatrix}$ 3 $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Show that v_1 and v_2 are eigenvectors of A .

$$
Av_1 = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -2v_1
$$

$$
Av_2 = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix} = 5 \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 5v_2.
$$

So -2 is the eigenvalue corresponding to the eigenvector v_1

and 5 is the eigenvalue corresponding to the eigenvector v_2 .

Thus with respect to the basis $B' = \{<1, -1>, <3, 4>\}$ we have

$$
A = \begin{bmatrix} -2 & 0 \\ 0 & 5 \end{bmatrix}.
$$

Notice that if we had used the change of basis formula, $P^{-1}AP$, for changing the basis for A from the standard basis $\{< 1, 0>, < 0, 1> \}$ to $B' = \{<1, -1>, <3, 4>\}$ we would get

$$
P = \begin{bmatrix} 1 & 3 \\ -1 & 4 \end{bmatrix} \implies P^{-1} = \frac{1}{\det(P)} \begin{bmatrix} 4 & -3 \\ 1 & 1 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 4 & -3 \\ 1 & 1 \end{bmatrix}
$$
, and

$$
P^{-1}AP = \frac{1}{7} \begin{bmatrix} 4 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 4 \end{bmatrix}
$$

= $\frac{1}{7} \begin{bmatrix} 4 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 15 \\ 2 & 20 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -14 & 0 \\ 0 & 35 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & 5 \end{bmatrix}.$

So given a matrix A representing a linear transformation from a finite dimensional vector space V into itself, how do we find its eigenvalues and eigenvectors? In other words, we want to find the numbers $\lambda \in \mathbb{R}$ and vectors $v \in V$, $v \neq 0$, such that:

$$
Av = \lambda v
$$

or equivalently:

 $(A - \lambda I)v=0.$

This last equation says the vector v is a non-zero vector that is in the Null Space of the matrix $A - \lambda I$, i.e. $v \in N(A - \lambda I)$. Recall that $N(A - \lambda I)$ is a subspace of V and it's called the **Eigenspace corresponding to the Eigenvalue λ**. Since the Null Space of a matrix is a subspace of V , the eigenspace corresponding to the eigenvalue λ is a subspace of V .

 $(A - \lambda I)v=0$ has a non-zero solution v if and only if $A - \lambda I$ is singular (ie, not invertible) since $N(A - \lambda I) \neq \{0\}$ (so $A - \lambda I$ is not 1-1) or equivalently, if $\det(A - \lambda I) = 0$. If $\dim(V) = n$ then $p(\lambda) = \det(A - \lambda I)$ is an n^{th} degree polynomial in λ . The polynomial $p(\lambda)$ is called the **characteristic polynomial** of A.

To find the eigenvalues and eigenvectors of an $n \times n$ matrix:

- 1. Calculate $p(\lambda) = \det(A \lambda I)$ = characteristic polynomial, an n^{th} degree polynomial in λ .
- 2. Find the roots of $det(A \lambda I) = 0$. The *n* roots (some of which could be complex numbers or multiple roots) are the eigenvalues of A .

3. For each eigenvalue λ , solve the linear equations given by:

 $(A - \lambda I)v=0$. (i.e. find the Null Space of $A - \lambda I$) That will give all of the eigenvectors v, associated with λ . This is called the eigenspace corresponding to the eigenvalue λ .

Ex. Find the eigenvalues and the corresponding eigenvectors/eigenspaces for:

 $A = |$ 3 2 $3 -2$].

1. Calculate
$$
p(\lambda) = \det(A - \lambda I)
$$

\n
$$
= \det \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
\n
$$
= \det \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}
$$
\n
$$
= \det \begin{bmatrix} 3 - \lambda & 2 \\ 3 & -2 - \lambda \end{bmatrix}
$$
\n
$$
= (3 - \lambda)(-2 - \lambda) - 6
$$
\n
$$
= -6 - 3\lambda + 2\lambda + \lambda^2 - 6
$$
\n
$$
p(\lambda) = \lambda^2 - \lambda - 12
$$

2. Find the roots of det $(A - \lambda I) = 0$.

$$
\lambda^2 - \lambda - 12 = 0
$$

$$
(\lambda - 4)(\lambda + 3) = 0
$$

$$
\lambda = 4 \text{ or } -3.
$$

So 4 and -3 are the eigenvalues of A .

3. To find the Eigenspace for each eigenvalue λ , solve the linear equations given by: $(A - \lambda I)v=0.$

$$
\lambda_1 = 4: \quad A - \lambda_1 I = A - 4I = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}
$$

$$
= \begin{bmatrix} 3 - 4 & 2 \\ 3 & -2 - 4 \end{bmatrix}
$$

$$
A-4I = \begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix}.
$$

Now find the Null Space of
$$
\begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix}
$$
. That is,

find all vectors
$$
v = \langle a_1, a_2 \rangle
$$
 such that $\begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

We can solve this system of linear equations using row operations:

$$
\begin{bmatrix} -1 & 2 & 0 \ 3 & -6 & 0 \end{bmatrix} \xrightarrow{3R_1 + R_2 \to R_2} \begin{bmatrix} -1 & 2 & 0 \ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1} \begin{bmatrix} 1 & -2 & 0 \ 0 & 0 & 0 \end{bmatrix}
$$

 a_2 is a free variable and $a_1 - 2a_2 = 0$, or $a_1 = 2a_2$.

So the solutions look like: $\langle 2\alpha, \alpha \rangle = \alpha \langle 2, 1 \rangle$, where α is any real number. Thus any vector of the form $\alpha < 2.1$ > is an eigenvector of A associated with $\lambda_1 = 4$. Therefore, the eigenspace is all vectors of the form α < 2,1 >, where α is any real number.

Let's show as an example that if we choose a real number α , say $\alpha = 2$, that $v = 2 < 2,1> = < 4,2>$ satisfies the equation:

 $Av = 4v$, or equivalently: $(A - 4I)v = 0$.

$$
Av = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 8 \end{bmatrix}
$$

(A - 4I) v = $\begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$
4v = 4 < 4,2 > = < 16,8 > $= \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

So $Av = 4v$, when $v = < 4,2 >$. So $(A - 4I)v = 0$, when $v = < 4,2 >$.

$$
\lambda_2 = -3: \quad A - \lambda_2 I = A - (-3)I = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}
$$

$$
= \begin{bmatrix} 3+3 & 2 \\ 3 & -2+3 \end{bmatrix}
$$

$$
A + 3I = \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix}
$$

Now find the Null Space of
$$
\begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix}
$$
. That is,

find all vectors $v =$ such that 6 2 3 1 \prod a_1 $\begin{bmatrix}a_1\\a_2\end{bmatrix}$ = [0 0 \vert . We can solve this system of linear equations with row operations:

$$
\begin{bmatrix} 6 & 2 & 0 \\ 3 & 1 & 0 \end{bmatrix} \xrightarrow[R_2 - \frac{1}{2}R_1 \to R_2]{} \begin{bmatrix} 6 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow[\frac{1}{6}R_1 \to R_1]{} \begin{bmatrix} 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

 a_2 is a free variable and $a_1 + \frac{1}{3}$ $\frac{1}{3}a_2 = 0$, or $a_1 = -\frac{1}{3}$ $rac{1}{3}a_2$.

So solutions are: $\lt -\frac{1}{2}$ $\frac{1}{3} \alpha$, $\alpha \geq \alpha \lt -\frac{1}{3}$ $\frac{1}{3}$, 1 >, where α is any real number.

Thus any vector of the form $\alpha < -\frac{1}{2}$ $\frac{1}{3}$, $1 >$, where α is any real number, is an eigenvector of A associated with $\lambda_2 = -3$.

Therefore, the eigenspace is all vectors of the form $\alpha < -\frac{1}{2}$ $\frac{1}{3}$, 1 >, where α is any real number.

So with respect to the basis ${< 2, 1 >, < -\frac{1}{2}}$ $\frac{1}{3}$, 1 > } the linear transformation repsented by A becomes

$$
\begin{bmatrix} 4 & 0 \\ 0 & -3 \end{bmatrix}
$$

Not every linear operator/ $(n \times n)$ matrix is diagonizable.

Ex. Show that $A = |$ 1 1 0 1] is not diagonalizable.

A is diagonalizable if and only if there are eigenvectors v, w that span \mathbb{R}^2 (and thus form a basis for \mathbb{R}^2). Let's see what happens when we try to find the eigenvalues and eigenvectors of A .

$$
\det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{bmatrix} = 0
$$

(1 - \lambda)² = 0 \implies So $\lambda = 1$ is a double root.
For $\lambda = 1$ we have: $A - \lambda I = A - I = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

To find the eigenvectors we need to find the null space of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ 0 0]. [0 1 0 0 \prod a_1 $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ 0 0]

 $\implies a_2 = 0$ and a_1 is any real number.

Thus the null space of $A - I$ is the set of vectors of the form $<\alpha, 0>=\alpha< 1, 0>$ in \mathbb{R}^2 .

So the eigenspace of A corresponding to the only eigenvalue $\lambda = 1$ Is spanned by the vector $< 1.0 >$. Thus the eigenvectors of A don't span \mathbb{R}^2 and thus A is not diagonalizable.

Ex. Suppose that $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ is a linear transformation given by: $T(a_0 + a_1x + a_2x^2) = (2a_0 - 3a_1 + a_2) + (a_0 - 2a_1 + a_2)x + (a_0 - 3a_1 + 2a_2)x^2.$ Find the eigenvalues and corresponding eigenspaces of T .

> First we need to find a matrix representation of T and then we can apply our 3 step process to find the eigenvalues and eigenspaces.

Let $B = \{1, x, x^2\}$ be the standard basis for $P_2(\mathbb{R})$.

$$
T(1) = 2 + x + x^{2} = 2, 1, 1 >_{B}
$$

\n
$$
T(x) = -3 - 2x - 3x^{2} = 3, -2, -3 >_{B}
$$

\n
$$
T(x^{2}) = 1 + x + 2x^{2} = 1, 1, 2 >_{B}
$$

Thus we have:

$$
A = [T]_B = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}.
$$

1. Calculate
$$
p(\lambda) = \det(A - \lambda I)
$$

\n
$$
= det \begin{bmatrix} 2 - \lambda & -3 & 1 \\ 1 & -2 - \lambda & 1 \\ 1 & -3 & 2 - \lambda \end{bmatrix}
$$
\n
$$
= (2 - \lambda) \begin{vmatrix} -2 - \lambda & 1 \\ -3 & 2 - \lambda \end{vmatrix} - 1 \begin{vmatrix} -3 & 1 \\ -3 & 2 - \lambda \end{vmatrix} + 1 \begin{vmatrix} -3 & 1 \\ -2 - \lambda & 1 \end{vmatrix}
$$
\n
$$
= (2 - \lambda)[(-2 - \lambda)(2 - \lambda) + 3] - [-3(2 - \lambda) + 3] + [-3 - (-2 - \lambda)]
$$
\n
$$
= (2 - \lambda)(\lambda^2 - 4 + 3) - (-6 + 3\lambda + 3) + (-3 + 2 + \lambda)
$$
\n
$$
= (2 - \lambda)(\lambda^2 - 1) - (3\lambda - 3) + (\lambda - 1)
$$

$$
= (2 - \lambda)(\lambda^2 - 1) - 2\lambda + 2
$$

= $(2 - \lambda)(\lambda - 1)(\lambda + 1) - 2(\lambda - 1)$
= $(\lambda - 1)[(2 - \lambda)(\lambda + 1) - 2]$
= $(\lambda - 1)(-\lambda^2 + \lambda)$
= $(\lambda - 1)(\lambda)(-\lambda + 1)$
= $-(\lambda - 1)^2(\lambda)$; So we have:
 $p(\lambda) = -(\lambda - 1)^2(\lambda)$.

2. Find the roots of det $(A - \lambda I) = 0$. $p(\lambda) = -(\lambda-1)^2(\lambda) = 0$; So the roots are:

 $\lambda = 0, 1;$ where $\lambda = 1$ is a double root. So 0 and 1 are the eigenvalues of A .

3. To find the eigenspace for each eigenvalue λ , solve the linear equations given by:

$$
(A - \lambda I)v = 0.
$$

$$
\lambda_1 = 0
$$
; $A - \lambda_1 I = A - 0I = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$.

Now find the Null Space of
$$
\begin{bmatrix} 2 & -3 & 1 \ 1 & -2 & 1 \ 1 & -3 & 2 \end{bmatrix}.
$$

That is, find all vectors $v =$ such that $|$ −3 1 −2 1 −3 2 \prod $a₁$ $a₂$ a_3 $\vert = \vert$]. Now we solve using row operations:

$$
\begin{bmatrix}\n2 & -3 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & -3 & 2 & 0\n\end{bmatrix}\n\xrightarrow{R_1 \leftrightarrow R_3}\n\begin{bmatrix}\n1 & -3 & 2 & 0 \\
1 & -2 & 1 & 0 \\
2 & -3 & 1 & 0\n\end{bmatrix}
$$
\n
$$
\xrightarrow[R_3 \to 2R_1 \to R_3]{\longrightarrow} \n\begin{bmatrix}\n1 & -3 & 2 & 0 \\
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 0\n\end{bmatrix}
$$
\n
$$
\xrightarrow[R_2 \to R_1 \to R_2]{\longrightarrow} \n\begin{bmatrix}\n1 & -3 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 3 & -3 & 0\n\end{bmatrix}
$$
\n
$$
\xrightarrow[R_3 \to 3R_2 \to R_3]{\longrightarrow} \n\begin{bmatrix}\n1 & -3 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
\xrightarrow[R_1 + 3R_2 \to R_1]{\longrightarrow} \n\begin{bmatrix}\n1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0\n\end{bmatrix}.
$$

So a_3 is a free variable and:

Financial

 $a_1 - a_3 = 0 \Rightarrow a_1 = a_3$ $a_2 - a_3 = 0 \Rightarrow a_2 = a_3.$

If we let $a_3 = \alpha$, then the solutions are: $\langle \alpha, \alpha, \alpha \rangle = \alpha \langle 1, 1, 1 \rangle$; $\alpha \in \mathbb{R}$. So the eigenspace of A for $\lambda_1 = 0 = \{ v \in V | v = \alpha < 1, 1, 1 >; \alpha \in \mathbb{R} \}.$

$$
\lambda_2 = \lambda_3 = 1; \quad A - \lambda_2 I = A - 1I = \begin{bmatrix} 2 - 1 & -3 & 1 \\ 1 & -2 - 1 & 1 \\ 1 & -3 & 2 - 1 \end{bmatrix}
$$

$$
A - \lambda_2 I = \begin{bmatrix} 1 & -3 & 1 \\ 1 & -3 & 1 \\ 1 & -3 & 1 \end{bmatrix}.
$$
Now find the Null Space of
$$
\begin{bmatrix} 1 & -3 & 1 \\ 1 & -3 & 1 \\ 1 & -3 & 1 \end{bmatrix}.
$$

So we must find all vectors $v=< a_1, a_2, a_3 >$ such that $|$ 1 −3 1 1 −3 1 1 −3 1 \prod a_1 $a₂$ a_3 $=$ \vert 0 0 0].

$$
\begin{bmatrix} 1 & -3 & 1 & 0 \ 1 & -3 & 1 & 0 \ 1 & -3 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 1 & -3 & 1 & 0 \ 1 & -3 & 1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}
$$

$$
\xrightarrow[R_2-R_1\to R_2]{}
$$

$$
\begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

$$
\xrightarrow[R_2-R_1\to R_2]{}
$$

So a_2 and a_3 are free variables and: $a_1 - 3a_2 + a_3 = 0$; or $a_1 = 3a_2 - a_3$.

So all of the solutions are given by: $v = < 3\alpha - \beta$, α , $\beta >$; where α , $\beta \in \mathbb{R}$, or $v = \alpha < 3, 1, 0 > +\beta < -1, 0, 1 >;$ where $\alpha, \beta \in \mathbb{R}$.

So the eigenspace associated with the eigenvalue 1 is given by:

eigenspace={ $v \in V | v = \alpha < 3, 1, 0 > +\beta < -1, 0, 1 >; \alpha, \beta \in \mathbb{R}$ }.

In this case it is easy to see that $< 3.1.0 >$ and $< -1.0.1 >$ are linearly independent (to be dependent they would have to be multiples of eachother). And since the eigenspace is just the

span $\{<3,1,0>, < -1,0,1>\}, < 3,1,0$ and $< -1,0,1>$ form a basis for the eigenspace and thus the dimension of the eigenspace is 2.

So with respect to the basis $B_1 = \{<1,1,1>, <3,1,0>, < -1,0,1>\}$ the linear transformation corresponding to $A = [T]_B$ has the form:

Notice that we arbitrarily decided how to number the eigenvalues. We could have just as easily said that $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 0$. However, the eigenspace associated with each eigenvalue does not change, but the order of the basis vectors of $P_2(\mathbb{R})$ does. In this case we would say that $B_2 = \{v_1 = 3, 1, 0 > v_2 = 3, 1, 0, 1 > v_3 = 1, 1, 1 > 3\}$ is the ordered basis of eigenvectors (instead of ${< 1,1,1 >, < 3,1,0 >, < -1,0,1 >}$) and our matrix representation would become:

$$
[T]_{B_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$