Eigenvalues and Eigenvectors- HW Problems

In problems 1-4 determine if the vector given is an eigenvector of the matrix A. If it is, find the eigenvalue associated with the vector.

1. $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix};$ v = < 2, 2 >2. $A = \begin{bmatrix} 6 & -4 \\ 3 & -1 \end{bmatrix};$ v = < 4, 3 >3. $A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix};$ v = < 1, 2 >4. $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{bmatrix};$ v = < 1, 1, 1 >.

In problems 5-9 given the matrix $A \in M_{n \times n}(\mathbb{R})$

- a. Find all eigenvalues
- b. For each eigenvalue λ of A find the eigenvectors corresponding to λ
- c. If possible, identify a basis of \mathbb{R}^n consisting of eigenvectors

d. If you can find a basis of eigenvectors, find an invertible matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix, and calculate $P^{-1}AP$.

- 5. $A = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix}$
- $6. \quad A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$

7.
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
; You can assume if $P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ then
$$P^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

8.
$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$
; You can assume if $P = \begin{bmatrix} 1 & 3 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ then
$$P^{-1} = \begin{bmatrix} -1 & 3 & -1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

9.
$$A = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}.$$

In problems 10-13 let $T: V \rightarrow V$ be a linear transformation (ie a linear operator). Find the eigenvalues of T and an ordered basis for V so that the matrix of T with respect to that basis is diagonal.

10.
$$V = \mathbb{R}^2$$
; $T(x_1, x_2) = (x_1 + x_2, 4x_1 + x_2)$

11.
$$V = \mathbb{R}^3$$
; $T(x_1, x_2, x_3) = (x_1 + x_2, 2x_2 + 2x_3, 3x_3)$

12.
$$V = P_2(\mathbb{R});$$

 $T(a_0 + a_1x + a_2x^2) = (a_0 + 2a_1 + a_2) + (3a_1 + a_2)x + (5a_1 - a_2)x^2$

13.
$$V = M_{2 \times 2}(\mathbb{R}); \quad T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

14. Let $A \in M_{2\times 2}(\mathbb{R})$. A is called idempotent if $A^2 = A$. Show that if λ is an eigenvalue of A, and A is idempotent, then $\lambda = 0$ or 1. Hint: $\lambda v = Av = A(Av)$.